Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
CD163+ macrophages promote angiogenesis and vascular permeability accompanied by inflammation in atherosclerosis
Liang Guo, Hirokuni Akahori, Emanuel Harari, Samantha L. Smith, Rohini Polavarapu, Vinit Karmali, Fumiyuki Otsuka, Rachel L. Gannon, Ryan E. Braumann, Megan H. Dickinson, Anuj Gupta, Audrey L. Jenkins, Michael J. Lipinski, Johoon Kim, Peter Chhour, Paul S. de Vries, Hiroyuki Jinnouchi, Robert Kutys, Hiroyoshi Mori, Matthew D. Kutyna, Sho Torii, Atsushi Sakamoto, Cheol Ung Choi, Qi Cheng, Megan L. Grove, Mariem A. Sawan, Yin Zhang, Yihai Cao, Frank D. Kolodgie, David P. Cormode, Dan E. Arking, Eric Boerwinkle, Alanna C. Morrison, Jeanette Erdmann, Nona Sotoodehnia, Renu Virmani, Aloke V. Finn
Liang Guo, Hirokuni Akahori, Emanuel Harari, Samantha L. Smith, Rohini Polavarapu, Vinit Karmali, Fumiyuki Otsuka, Rachel L. Gannon, Ryan E. Braumann, Megan H. Dickinson, Anuj Gupta, Audrey L. Jenkins, Michael J. Lipinski, Johoon Kim, Peter Chhour, Paul S. de Vries, Hiroyuki Jinnouchi, Robert Kutys, Hiroyoshi Mori, Matthew D. Kutyna, Sho Torii, Atsushi Sakamoto, Cheol Ung Choi, Qi Cheng, Megan L. Grove, Mariem A. Sawan, Yin Zhang, Yihai Cao, Frank D. Kolodgie, David P. Cormode, Dan E. Arking, Eric Boerwinkle, Alanna C. Morrison, Jeanette Erdmann, Nona Sotoodehnia, Renu Virmani, Aloke V. Finn
View: Text | PDF
Research Article Angiogenesis Vascular biology

CD163+ macrophages promote angiogenesis and vascular permeability accompanied by inflammation in atherosclerosis

  • Text
  • PDF
Abstract

Intake of hemoglobin by the hemoglobin-haptoglobin receptor CD163 leads to a distinct alternative non–foam cell antiinflammatory macrophage phenotype that was previously considered atheroprotective. Here, we reveal an unexpected but important pathogenic role for these macrophages in atherosclerosis. Using human atherosclerotic samples, cultured cells, and a mouse model of advanced atherosclerosis, we investigated the role of intraplaque hemorrhage on macrophage function with respect to angiogenesis, vascular permeability, inflammation, and plaque progression. In human atherosclerotic lesions, CD163+ macrophages were associated with plaque progression, microvascularity, and a high level of HIF1α and VEGF-A expression. We observed irregular vascular endothelial cadherin in intraplaque microvessels surrounded by CD163+ macrophages. Within these cells, activation of HIF1α via inhibition of prolyl hydroxylases promoted VEGF-mediated increases in intraplaque angiogenesis, vascular permeability, and inflammatory cell recruitment. CD163+ macrophages increased intraplaque endothelial VCAM expression and plaque inflammation. Subjects with homozygous minor alleles of the SNP rs7136716 had elevated microvessel density, increased expression of CD163 in ruptured coronary plaques, and a higher risk of myocardial infarction and coronary heart disease in population cohorts. Thus, our findings highlight a nonlipid-driven mechanism by which alternative macrophages promote plaque angiogenesis, leakiness, inflammation, and progression via the CD163/HIF1α/VEGF-A pathway.

Authors

Liang Guo, Hirokuni Akahori, Emanuel Harari, Samantha L. Smith, Rohini Polavarapu, Vinit Karmali, Fumiyuki Otsuka, Rachel L. Gannon, Ryan E. Braumann, Megan H. Dickinson, Anuj Gupta, Audrey L. Jenkins, Michael J. Lipinski, Johoon Kim, Peter Chhour, Paul S. de Vries, Hiroyuki Jinnouchi, Robert Kutys, Hiroyoshi Mori, Matthew D. Kutyna, Sho Torii, Atsushi Sakamoto, Cheol Ung Choi, Qi Cheng, Megan L. Grove, Mariem A. Sawan, Yin Zhang, Yihai Cao, Frank D. Kolodgie, David P. Cormode, Dan E. Arking, Eric Boerwinkle, Alanna C. Morrison, Jeanette Erdmann, Nona Sotoodehnia, Renu Virmani, Aloke V. Finn

×

Figure 5

Deletion of CD163 in mice reduces intraplaque neovascularization and plaque progression.

Options: View larger image (or click on image) Download as PowerPoint
Deletion of CD163 in mice reduces intraplaque neovascularization and pla...
(A) Immunoblotting of mouse macrophages with quantitation of densitometry for HIF1α in macrophages isolated from WT or CD163–/– mice stimulated with Hb (n = 4 per group). (B) Analysis of macrophage supernatant for VEGF-A by ELISA (n = 4 per group). (1: WT macrophages, 2: Hb-stimulated WT macrophages, 3: CD163–/– macrophages, 4: Hb-stimulated CD163–/– macrophages). (C) Representative H&E staining of BCA plaque with a of gross inset photograph of the aortic arch from 1-year-old ApoE–/– and ApoE–/– CD163–/– mice. Scale bars: 100 μm. (D–G) Quantitative measurements of lesion size, percentage of stenosis, lesion pathological scores, and necrotic areas in the BCA plaque (n = 8–12 per group). (H) Representative immunofluorescence confocal microscopic images of BCA plaque stained with VE-cadherin (green), CD163 (red), and DAPI (blue). Scale bars: 50 μm and 10 μm (enlarged images of boxed areas on the left). (I) Microvessel density quantification calculated by the number of microvessels per plaque area identified by VE-cadherin immunofluorescence confocal microscopy (n = 6–7 per group). (J) Representative immunofluorescence confocal microscopic images of intraplaque FITC-dextran (green) as a marker for permeability. Scale bars: 100 μm. Total intraplaque FITC fluorescence was quantified from confocal images of BCA plaques perfused with FITC-dextran to determine permeability (n = 7 per group). Bars and plots indicate the mean ± SEM (A and B) or the mean ± SD (D–G, I, and J). (A and B) *P < 0.05 versus other groups, by 1-way ANOVA , and, if the ratio test (F test) was significant, a more detailed post-hoc analysis of differences between groups was performed using a Tukey-Kramer honest significant difference test. (D–G, I, and J) P < 0.01 and P < 0.05, by 2-sided Student’s t test.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts