Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Macrolides selectively inhibit mutant KCNJ5 potassium channels that cause aldosterone-producing adenoma
Ute I. Scholl, … , Wenhui Wang, Richard P. Lifton
Ute I. Scholl, … , Wenhui Wang, Richard P. Lifton
Published June 12, 2017
Citation Information: J Clin Invest. 2017;127(7):2739-2750. https://doi.org/10.1172/JCI91733.
View: Text | PDF
Research Article Endocrinology Nephrology

Macrolides selectively inhibit mutant KCNJ5 potassium channels that cause aldosterone-producing adenoma

  • Text
  • PDF
Abstract

Aldosterone-producing adenomas (APAs) are benign tumors of the adrenal gland that constitutively produce the salt-retaining steroid hormone aldosterone and cause millions of cases of severe hypertension worldwide. Either of 2 somatic mutations in the potassium channel KCNJ5 (G151R and L168R, hereafter referred to as KCNJ5MUT) in adrenocortical cells account for half of APAs worldwide. These mutations alter channel selectivity to allow abnormal Na+ conductance, resulting in membrane depolarization, calcium influx, aldosterone production, and cell proliferation. Because APA diagnosis requires a difficult invasive procedure, patients often remain undiagnosed and inadequately treated. Inhibitors of KCNJ5MUT could allow noninvasive diagnosis and therapy of APAs carrying KCNJ5 mutations. Here, we developed a high-throughput screen for rescue of KCNJ5MUT-induced lethality and identified a series of macrolide antibiotics, including roxithromycin, that potently inhibit KCNJ5MUT, but not KCNJ5WT. Electrophysiology demonstrated direct KCNJ5MUT inhibition. In human aldosterone-producing adrenocortical cancer cell lines, roxithromycin inhibited KCNJ5MUT-induced induction of CYP11B2 (encoding aldosterone synthase) expression and aldosterone production. Further exploration of macrolides showed that KCNJ5MUT was similarly selectively inhibited by idremcinal, a macrolide motilin receptor agonist, and by synthesized macrolide derivatives lacking antibiotic or motilide activity. Macrolide-derived selective KCNJ5MUT inhibitors thus have the potential to advance the diagnosis and treatment of APAs harboring KCNJ5MUT.

Authors

Ute I. Scholl, Laura Abriola, Chengbiao Zhang, Esther N. Reimer, Mark Plummer, Barbara I. Kazmierczak, Junhui Zhang, Denton Hoyer, Jane S. Merkel, Wenhui Wang, Richard P. Lifton

×

Figure 2

Structure activity relationship of macrolide inhibition of KCNJ5G151R.

Options: View larger image (or click on image) Download as PowerPoint
Structure activity relationship of macrolide inhibition of KCNJ5G151R.
S...
Select compounds are shown. The locations of desosamine and cladinose moieties are indicated on the roxithromycin structure. Values of IC50 against KCNJ5G151R are given for active compounds. See Table 1 for detailed screen results.

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts