Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Suppressed smooth muscle proliferation and inflammatory cell invasion after arterial injury in elafin-overexpressing mice
Syed H.E. Zaidi, … , Mansoor Husain, Marlene Rabinovitch
Syed H.E. Zaidi, … , Mansoor Husain, Marlene Rabinovitch
Published June 15, 2000
Citation Information: J Clin Invest. 2000;105(12):1687-1695. https://doi.org/10.1172/JCI9147.
View: Text | PDF
Article

Suppressed smooth muscle proliferation and inflammatory cell invasion after arterial injury in elafin-overexpressing mice

  • Text
  • PDF
Abstract

Elastases degrade the extracellular matrix, releasing growth factors and chemotactic peptides, inducing glycoproteins such as tenascin, and thereby promoting vascular cell proliferation and migration. Administration of serine elastase inhibitors reduces experimentally induced vascular disease. The ability to mount an intrinsic anti-elastase response may, therefore, protect against intimal/medial thickening after vascular injury. To investigate this, we showed that wire-induced endothelial denudation of the carotid artery is associated with transient elevation in elastase activity and confirmed that this is abolished in transgenic mice overexpressing the serine elastase inhibitor, elafin, targeted to the cardiovascular system. Ten days after injury, nontransgenic littermates show vessel enlargement, intimal thickening, increased medial area and cellularity, and 2-fold increase in tenascin. Injured vessels in transgenic mice become enlarged but are otherwise similar to sham-operated controls. Injury-induced vessel wall thickening, which is observed only in nontransgenic mice, is related to foci of neutrophils and macrophages, in addition to smooth muscle cells that fail to stain for α-actin and are likely dedifferentiated. Our study therefore suggests that a major determinant of the vascular response to injury is the early transient induction of serine elastase activity, which leads to cellular proliferation and inflammatory cell migration.

Authors

Syed H.E. Zaidi, Xiao-Mang You, Sorana Ciura, Stacey O’Blenes, Mansoor Husain, Marlene Rabinovitch

×

Full Text PDF | Download (1.38 MB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts