Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Chimeric protein repair of laminin polymerization ameliorates muscular dystrophy phenotype
Karen K. McKee, … , Markus A. Rüegg, Peter D. Yurchenco
Karen K. McKee, … , Markus A. Rüegg, Peter D. Yurchenco
Published February 20, 2017
Citation Information: J Clin Invest. 2017;127(3):1075-1089. https://doi.org/10.1172/JCI90854.
View: Text | PDF
Research Article Muscle biology

Chimeric protein repair of laminin polymerization ameliorates muscular dystrophy phenotype

  • Text
  • PDF
Abstract

Mutations in laminin α2-subunit (Lmα2, encoded by LAMA2) are linked to approximately 30% of congenital muscular dystrophy cases. Mice with a homozygous mutation in Lama2 (dy2J mice) express a nonpolymerizing form of laminin-211 (Lm211) and are a model for ambulatory-type Lmα2-deficient muscular dystrophy. Here, we developed transgenic dy2J mice with muscle-specific expression of αLNNd, a laminin/nidogen chimeric protein that provides a missing polymerization domain. Muscle-specific expression of αLNNd in dy2J mice resulted in strong amelioration of the dystrophic phenotype, manifested by the prevention of fibrosis and restoration of forelimb grip strength. αLNNd also restored myofiber shape, size, and numbers to control levels in dy2J mice. Laminin immunostaining and quantitation of tissue extractions revealed increased Lm211 expression in αLNNd-transgenic dy2J mice. In cultured myotubes, we determined that αLNNd expression increased myotube surface accumulation of polymerization-deficient recombinant laminins, with retention of collagen IV, reiterating the basement membrane (BM) changes observed in vivo. Laminin LN domain mutations linked to several of the Lmα2-deficient muscular dystrophies are predicted to compromise polymerization. The data herein support the hypothesis that engineered expression of αLNNd can overcome polymerization deficits to increase laminin, stabilize BM structure, and substantially ameliorate muscular dystrophy.

Authors

Karen K. McKee, Stephanie C. Crosson, Sarina Meinen, Judith R. Reinhard, Markus A. Rüegg, Peter D. Yurchenco

×

Full Text PDF | Download (4.37 MB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts