Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Immunotherapy for transplantation-associated viral infections
Claire Roddie, Karl S. Peggs
Claire Roddie, Karl S. Peggs
Published June 19, 2017
Citation Information: J Clin Invest. 2017;127(7):2513-2522. https://doi.org/10.1172/JCI90599.
View: Text | PDF
Review Series

Immunotherapy for transplantation-associated viral infections

  • Text
  • PDF
Abstract

Cytomegalovirus (CMV) and Epstein-Barr virus (EBV) infections following allogeneic hematopoietic stem cell transplantation (HSCT) are a major cause of morbidity and mortality. Early clinical trials demonstrate that adoptive transfer of donor-derived virus-specific T cells to restore virus-specific immunity is an effective strategy to control CMV and EBV infection after HSCT, conferring protection in 70%–90% of patients. The field has evolved rapidly to develop solutions to some of the manufacturing challenges identified in early clinical studies, such as prolonged in vitro culture, optimization of the purity of the virus-specific T cell product, the potential limitations of targeting a single viral antigen, and how to manage the patient with a virus-naive donor. This Review both discusses the seminal early studies and explores cutting-edge novel technologies that broaden the feasibility of and the scope for delivering virus-specific T cells to patients after HSCT.

Authors

Claire Roddie, Karl S. Peggs

×

Full Text PDF | Download (457.56 KB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts