Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Synaptic UNC13A protein variant causes increased neurotransmission and dyskinetic movement disorder
Noa Lipstein, … , Judith J. Jans, Nils Brose
Noa Lipstein, … , Judith J. Jans, Nils Brose
Published February 13, 2017
Citation Information: J Clin Invest. 2017;127(3):1005-1018. https://doi.org/10.1172/JCI90259.
View: Text | PDF
Research Article Neuroscience

Synaptic UNC13A protein variant causes increased neurotransmission and dyskinetic movement disorder

  • Text
  • PDF
Abstract

Munc13 proteins are essential regulators of neurotransmitter release at nerve cell synapses. They mediate the priming step that renders synaptic vesicles fusion-competent, and their genetic elimination causes a complete block of synaptic transmission. Here we have described a patient displaying a disorder characterized by a dyskinetic movement disorder, developmental delay, and autism. Using whole-exome sequencing, we have shown that this condition is associated with a rare, de novo Pro814Leu variant in the major human Munc13 paralog UNC13A (also known as Munc13-1). Electrophysiological studies in murine neuronal cultures and functional analyses in Caenorhabditis elegans revealed that the UNC13A variant causes a distinct dominant gain of function that is characterized by increased fusion propensity of synaptic vesicles, which leads to increased initial synaptic vesicle release probability and abnormal short-term synaptic plasticity. Our study underscores the critical importance of fine-tuned presynaptic control in normal brain function. Further, it adds the neuronal Munc13 proteins and the synaptic vesicle priming process that they control to the known etiological mechanisms of psychiatric and neurological synaptopathies.

Authors

Noa Lipstein, Nanda M. Verhoeven-Duif, Francesco E. Michelassi, Nathaniel Calloway, Peter M. van Hasselt, Katarzyna Pienkowska, Gijs van Haaften, Mieke M. van Haelst, Ron van Empelen, Inge Cuppen, Heleen C. van Teeseling, Annemieke M.V. Evelein, Jacob A. Vorstman, Sven Thoms, Olaf Jahn, Karen J. Duran, Glen R. Monroe, Timothy A. Ryan, Holger Taschenberger, Jeremy S. Dittman, Jeong-Seop Rhee, Gepke Visser, Judith J. Jans, Nils Brose

×

Full Text PDF | Download (1.06 MB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts