Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Autophagy facilitates macrophage depots of sustained-release nanoformulated antiretroviral drugs
Divya Prakash Gnanadhas, … , Howard E. Gendelman, Santhi Gorantla
Divya Prakash Gnanadhas, … , Howard E. Gendelman, Santhi Gorantla
Published January 30, 2017
Citation Information: J Clin Invest. 2017;127(3):857-873. https://doi.org/10.1172/JCI90025.
View: Text | PDF
Research Article AIDS/HIV

Autophagy facilitates macrophage depots of sustained-release nanoformulated antiretroviral drugs

  • Text
  • PDF
Abstract

Long-acting anti-HIV products can substantively change the standard of care for patients with HIV/AIDS. To this end, hydrophobic antiretroviral drugs (ARVs) were recently developed for parenteral administration at monthly or longer intervals. While shorter-acting hydrophilic drugs can be made into nanocarrier-encased prodrugs, the nanocarrier encasement must be boosted to establish long-acting ARV depots. The mixed-lineage kinase 3 (MLK-3) inhibitor URMC-099 provides this function by affecting autophagy. Here, we have shown that URMC-099 facilitates ARV sequestration and its antiretroviral responses by promoting the nuclear translocation of the transcription factor EB (TFEB). In monocyte-derived macrophages, URMC-099 induction of autophagy led to retention of nanoparticles containing the antiretroviral protease inhibitor atazanavir. These nanoparticles were localized within macrophage autophagosomes, leading to a 4-fold enhancement of mitochondrial and cell vitality. In rodents, URMC-099 activation of autophagy led to 50-fold increases in the plasma drug concentration of the viral integrase inhibitor dolutegravir. These data paralleled URMC-099–mediated induction of autophagy and the previously reported antiretroviral responses in HIV-1–infected humanized mice. We conclude that pharmacologic induction of autophagy provides a means to extend the action of a long-acting, slow, effective release of antiretroviral therapy.

Authors

Divya Prakash Gnanadhas, Prasanta K. Dash, Brady Sillman, Aditya N. Bade, Zhiyi Lin, Diana L. Palandri, Nagsen Gautam, Yazen Alnouti, Harris A. Gelbard, JoEllyn McMillan, R. Lee Mosley, Benson Edagwa, Howard E. Gendelman, Santhi Gorantla

×

Figure 7

URMC-099 treatment in humanized mice.

Options: View larger image (or click on image) Download as PowerPoint
URMC-099 treatment in humanized mice.
(A and B) Humanized NSG mice were ...
(A and B) Humanized NSG mice were infected with HIV-1ADA and treated with URMC-099 (n = 4 per group). Ten weeks after infection, (A) plasma viral load and (B) plasma IL-1β concentration were determined (n = 4 mice per group). Values represent the mean ± SEM. ***P ≤ 0.001, by Mann–Whitney U test. (C) Paraffin-embedded spleen tissue sections from URMC-099–treated and control HIV-1–infected humanized mice were stained for LC3B (red) in autophagosomes and CD68 (green) in macrophages. DAPI was used to stain nuclei. The merged panel shows colocalization of LC3B and CD68 in spleens from URMC-099–treated mice. Scale bars: 20 μm.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts