Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Pharmacological induction of hypoxia-inducible transcription factor ARNT attenuates chronic kidney failure
Björn Tampe, … , Samy Hakroush, Michael Zeisberg
Björn Tampe, … , Samy Hakroush, Michael Zeisberg
Published April 17, 2018
Citation Information: J Clin Invest. 2018;128(7):3053-3070. https://doi.org/10.1172/JCI89632.
View: Text | PDF
Research Article Nephrology

Pharmacological induction of hypoxia-inducible transcription factor ARNT attenuates chronic kidney failure

  • Text
  • PDF
Abstract

Progression of chronic kidney disease associated with progressive fibrosis and impaired tubular epithelial regeneration is still an unmet biomedical challenge because, once chronic lesions have manifested, no effective therapies are available as of yet for clinical use. Prompted by various studies across multiple organs demonstrating that preconditioning regimens to induce endogenous regenerative mechanisms protect various organs from later incurring acute injuries, we here aimed to gain insights into the molecular mechanisms underlying successful protection and to explore whether such pathways could be utilized to inhibit progression of chronic organ injury. We identified a protective mechanism controlled by the transcription factor ARNT that effectively inhibits progression of chronic kidney injury by transcriptional induction of ALK3, the principal mediator of antifibrotic and proregenerative bone morphogenetic protein–signaling (BMP-signaling) responses. We further report that ARNT expression itself is controlled by the FKBP12/YY1 transcriptional repressor complex and that disruption of such FKBP12/YY1 complexes by picomolar FK506 at subimmunosuppressive doses increases ARNT expression, subsequently leading to homodimeric ARNT-induced ALK3 transcription. Direct targeting of FKBP12/YY1 with in vivo morpholino approaches or small molecule inhibitors, including GPI-1046, was equally effective for inducing ARNT expression, with subsequent activation of ALK3-dependent canonical BMP-signaling responses and attenuated chronic organ failure in models of chronic kidney disease, and also cardiac and liver injuries. In summary, we report an organ-protective mechanism that can be pharmacologically modulated by immunophilin ligands FK506 and GPI-1046 or therapeutically targeted by in vivo morpholino approaches.

Authors

Björn Tampe, Désirée Tampe, Gunsmaa Nyamsuren, Friederike Klöpper, Gregor Rapp, Anne Kauffels, Thomas Lorf, Elisabeth M. Zeisberg, Gerhard A. Müller, Raghu Kalluri, Samy Hakroush, Michael Zeisberg

×

Figure 7

Evidence for Arnt homodimer formation in mice treated with FK506.

Options: View larger image (or click on image) Download as PowerPoint
Evidence for Arnt homodimer formation in mice treated with FK506.
(A and...
(A and B) Representative kidney sections of γGTcre+;Yy1fl/fl and γGTcre–;Yy1fl/fl control mice immunolabeled with primary antibodies against Arnt are shown. n = 3/group. Data are presented as mean ± SD. **P < 0.01; ***P < 0.001, 1-way ANOVA with Bonferroni’s post hoc analysis. (C–E) Arnt protein levels were analyzed by immunoblotting and immunostaining. Scale bars: 25 μm. n = 6/group. Data are presented as mean ± SD. ***P < 0.001; #P < 0.0001, 1-way ANOVA with Bonferroni’s post hoc analysis. (F) Dimer formation of Arnt/Arnt, Arnt/Hif1α, Arnt/Hif2α, and Arnt/Ahr in total kidney lysates was assessed by native gel electrophoresis after Arnt pulldown. See complete unedited blots in the supplemental material.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts