Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Epicardial YAP/TAZ orchestrate an immunosuppressive response following myocardial infarction
Vimal Ramjee, … , Rajan Jain, Jonathan A. Epstein
Vimal Ramjee, … , Rajan Jain, Jonathan A. Epstein
Published February 6, 2017
Citation Information: J Clin Invest. 2017;127(3):899-911. https://doi.org/10.1172/JCI88759.
View: Text | PDF
Research Article Cardiology Cell biology

Epicardial YAP/TAZ orchestrate an immunosuppressive response following myocardial infarction

  • Text
  • PDF
Abstract

Ischemic heart disease resulting from myocardial infarction (MI) is the most prevalent form of heart disease in the United States. Post-MI cardiac remodeling is a multifaceted process that includes activation of fibroblasts and a complex immune response. T-regulatory cells (Tregs), a subset of CD4+ T cells, have been shown to suppress the innate and adaptive immune response and limit deleterious remodeling following myocardial injury. However, the mechanisms by which injured myocardium recruits suppressive immune cells remain largely unknown. Here, we have shown a role for Hippo signaling in the epicardium in suppressing the post-infarct inflammatory response through recruitment of Tregs. Mice deficient in epicardial YAP and TAZ, two core Hippo pathway effectors, developed profound post-MI pericardial inflammation and myocardial fibrosis, resulting in cardiomyopathy and death. Mutant mice exhibited fewer suppressive Tregs in the injured myocardium and decreased expression of the gene encoding IFN-γ, a known Treg inducer. Furthermore, controlled local delivery of IFN-γ following MI rescued Treg infiltration into the injured myocardium of YAP/TAZ mutants and decreased fibrosis. Collectively, these results suggest that epicardial Hippo signaling plays a key role in adaptive immune regulation during the post-MI recovery phase.

Authors

Vimal Ramjee, Deqiang Li, Lauren J. Manderfield, Feiyan Liu, Kurt A. Engleka, Haig Aghajanian, Christopher B. Rodell, Wen Lu, Vivienne Ho, Tao Wang, Li Li, Anamika Singh, Dasan M. Cibi, Jason A. Burdick, Manvendra K. Singh, Rajan Jain, Jonathan A. Epstein

×

Figure 7

Hydrogel treatment with IFN-γ after MI rescues the mutant phenotype.

Options: View larger image (or click on image) Download as PowerPoint
Hydrogel treatment with IFN-γ after MI rescues the mutant phenotype.
(A)...
(A) Whole-mount bright-field images of representative Wt1CreERT2/+ Yapfl/fl Tazfl/fl R26Tomato/+ (mutant) hearts following MI injury with empty or IFN-γ gel treatment. White arrowheads indicate adhesion of the anterior heart to the chest wall; green arrowheads denote hydrogel on the heart surface. (B) Masson’s trichrome staining of serial cross sections from the coronary ligature to the apex of the heart 14 days after MI in empty gel– and IFN-γ gel–treated animals (n = 4 for each cohort). Fibrotic tissue is stained blue. Quantitation of the proportion of fibrosis indexed to the total myocardial CSA in the LV free wall revealed a 34.4% relative reduction of fibrosis in IFN-γ–treated hearts compared with empty gel–treated hearts (P < 0.05). (C) Cross sections were immunostained as indicated. (D) Mean number of CD3+Foxp3+ cells per heart section in 4 mice per group. Scale bars: 1 mm (A), 2 mm (B), and 20 μm (C). Data represent the mean ± SEM. *P < 0.05, by 2-tailed Student’s t test.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts