Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Sirtuin 2 regulates cellular iron homeostasis via deacetylation of transcription factor NRF2
Xiaoyan Yang, … , David Gius, Hossein Ardehali
Xiaoyan Yang, … , David Gius, Hossein Ardehali
Published March 13, 2017
Citation Information: J Clin Invest. 2017;127(4):1505-1516. https://doi.org/10.1172/JCI88574.
View: Text | PDF
Research Article Cell biology Metabolism

Sirtuin 2 regulates cellular iron homeostasis via deacetylation of transcription factor NRF2

  • Text
  • PDF
Abstract

SIRT2 is a cytoplasmic sirtuin that plays a role in various cellular processes, including tumorigenesis, metabolism, and inflammation. Since these processes require iron, we hypothesized that SIRT2 directly regulates cellular iron homeostasis. Here, we have demonstrated that SIRT2 depletion results in a decrease in cellular iron levels both in vitro and in vivo. Mechanistically, we determined that SIRT2 maintains cellular iron levels by binding to and deacetylating nuclear factor erythroid-derived 2–related factor 2 (NRF2) on lysines 506 and 508, leading to a reduction in total and nuclear NRF2 levels. The reduction in nuclear NRF2 leads to reduced ferroportin 1 (FPN1) expression, which in turn results in decreased cellular iron export. Finally, we observed that Sirt2 deletion reduced cell viability in response to iron deficiency. Moreover, livers from Sirt2–/– mice had decreased iron levels, while this effect was reversed in Sirt2–/– Nrf2–/– double-KO mice. Taken together, our results uncover a link between sirtuin proteins and direct control over cellular iron homeostasis via regulation of NRF2 deacetylation and stability.

Authors

Xiaoyan Yang, Seong-Hoon Park, Hsiang-Chun Chang, Jason S. Shapiro, Athanassios Vassilopoulos, Konrad T. Sawicki, Chunlei Chen, Meng Shang, Paul W. Burridge, Conrad L. Epting, Lisa D. Wilsbacher, Supak Jenkitkasemwong, Mitchell Knutson, David Gius, Hossein Ardehali

×

Figure 7

Nrf2 deletion reverses iron deficiency in the livers of Sirt2–/– mice.

Options: View larger image (or click on image) Download as PowerPoint

Nrf2 deletion reverses iron deficiency in the livers of Sirt2–/– mice.
...
(A) Non-heme iron content in the livers of Sirt2+/+, Sirt2–/–, and Sirt2–/– Nrf2–/– mice (n = 5 per group). (B) NRF2, FPN1, and FTL protein levels in the livers of Sirt2+/+, Sirt2–/–, and Sirt2–/– Nrf2–/– mice (n = 3 per genotype). Bar graph representing densitometry result were shown in (C). (D) Nuclear NRF2 levels in primary hepatocytes isolated from Sirt2+/+, Sirt2–/–, and Sirt2–/– Nrf2–/– mice (n = 1 per genotype; cells were cultured in 5 or 6 individual wells). (E) TFRC1, FTL, and FPN1 protein levels in primary hepatocytes isolated from Sirt2+/+, Sirt2–/–, and Sirt2–/– Nrf2–/– mice (n = 1 per genotype; cells were cultured in 3 individual wells). Data are presented as the mean ± SEM. *P < 0.05, by ANOVA with Bonferroni’s correction for multiple comparisons.
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts