Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Axial tubule junctions control rapid calcium signaling in atria
Sören Brandenburg, Tobias Kohl, George S.B. Williams, Konstantin Gusev, Eva Wagner, Eva A. Rog-Zielinska, Elke Hebisch, Miroslav Dura, Michael Didié, Michael Gotthardt, Viacheslav O. Nikolaev, Gerd Hasenfuss, Peter Kohl, Christopher W. Ward, W. Jonathan Lederer, Stephan E. Lehnart
Sören Brandenburg, Tobias Kohl, George S.B. Williams, Konstantin Gusev, Eva Wagner, Eva A. Rog-Zielinska, Elke Hebisch, Miroslav Dura, Michael Didié, Michael Gotthardt, Viacheslav O. Nikolaev, Gerd Hasenfuss, Peter Kohl, Christopher W. Ward, W. Jonathan Lederer, Stephan E. Lehnart
View: Text | PDF
Research Article Cardiology Cell biology

Axial tubule junctions control rapid calcium signaling in atria

  • Text
  • PDF
Abstract

The canonical atrial myocyte (AM) is characterized by sparse transverse tubule (TT) invaginations and slow intracellular Ca2+ propagation but exhibits rapid contractile activation that is susceptible to loss of function during hypertrophic remodeling. Here, we have identified a membrane structure and Ca2+-signaling complex that may enhance the speed of atrial contraction independently of phospholamban regulation. This axial couplon was observed in human and mouse atria and is composed of voluminous axial tubules (ATs) with extensive junctions to the sarcoplasmic reticulum (SR) that include ryanodine receptor 2 (RyR2) clusters. In mouse AM, AT structures triggered Ca2+ release from the SR approximately 2 times faster at the AM center than at the surface. Rapid Ca2+ release correlated with colocalization of highly phosphorylated RyR2 clusters at AT-SR junctions and earlier, more rapid shortening of central sarcomeres. In contrast, mice expressing phosphorylation-incompetent RyR2 displayed depressed AM sarcomere shortening and reduced in vivo atrial contractile function. Moreover, left atrial hypertrophy led to AT proliferation, with a marked increase in the highly phosphorylated RyR2-pS2808 cluster fraction, thereby maintaining cytosolic Ca2+ signaling despite decreases in RyR2 cluster density and RyR2 protein expression. AT couplon “super-hubs” thus underlie faster excitation-contraction coupling in health as well as hypertrophic compensatory adaptation and represent a structural and metabolic mechanism that may contribute to contractile dysfunction and arrhythmias.

Authors

Sören Brandenburg, Tobias Kohl, George S.B. Williams, Konstantin Gusev, Eva Wagner, Eva A. Rog-Zielinska, Elke Hebisch, Miroslav Dura, Michael Didié, Michael Gotthardt, Viacheslav O. Nikolaev, Gerd Hasenfuss, Peter Kohl, Christopher W. Ward, W. Jonathan Lederer, Stephan E. Lehnart

×

Figure 6

Catecholaminergic stimulation accelerates atrial Ca2+ signaling.

Options: View larger image (or click on image) Download as PowerPoint
Catecholaminergic stimulation accelerates atrial Ca2+ signaling.
(A) Liv...
(A) Live imaging of AT and S membrane structures during Ca2+ transient onset in control- versus ISO/RO-treated AMs (0.5-Hz pacing). ISO/RO treatment accelerated transversal Ca2+ release propagation across the cytosol, compressing the F25 profile through a decreased cytosolic (CY) latency of early Ca2+ release (dF/dt). Data are representative of 9 control- and 17 ISO/RO-treated AMs. **P < 0.01 and ***P < 0.001, by Student’s t test. (B) Immunoblots comparing ISO/RO-treated (1 μM/10 μM) atrial (A) tissue from WT and phosphorylation-incompetent RyR2-S2808A+/+ mouse hearts; ventricular (V) tissue was compared for reference. In WT atria, significantly higher expression levels of both PKA-C and SERCA2 were detected, in contrast to significantly lower PLN levels. Atrial versus ventricular PKA phosphorylation changes were significantly increased for the RyR2-S2808 site, but not for the PLN-S16 site. Note the similar AC5/6 and RyR2 protein levels. Blots are representative of 3 individual experiments (see Supplemental Figure 10 for uncut blots). (C) Analogous RyR2-S2814–specific immunoblotting established in CaMK phosphorylation–incompetent RyR2-S2814A+/+ mouse hearts (see also Supplemental Figures 12A and 12B). Bar graph shows a significantly increased atrial RyR2-S2814 phosphorylation change in atrial tissue after ISO/RO (1 μM/10 μM) treatment. (D) SR Ca2+ load was significantly higher in AMs than in VMs measured with caffeine (10 mM). n = 8 AMs, 9 VMs. *P < 0.05 and ***P < 0.001, by Student’s t test.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts