Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Targeting methyltransferase PRMT5 eliminates leukemia stem cells in chronic myelogenous leukemia
Yanli Jin, … , Ruibao Ren, Jingxuan Pan
Yanli Jin, … , Ruibao Ren, Jingxuan Pan
Published September 19, 2016
Citation Information: J Clin Invest. 2016;126(10):3961-3980. https://doi.org/10.1172/JCI85239.
View: Text | PDF
Research Article Hematology

Targeting methyltransferase PRMT5 eliminates leukemia stem cells in chronic myelogenous leukemia

  • Text
  • PDF
Abstract

Imatinib-insensitive leukemia stem cells (LSCs) are believed to be responsible for resistance to BCR-ABL tyrosine kinase inhibitors and relapse of chronic myelogenous leukemia (CML). Identifying therapeutic targets to eradicate CML LSCs may be a strategy to cure CML. In the present study, we discovered a positive feedback loop between BCR-ABL and protein arginine methyltransferase 5 (PRMT5) in CML cells. Overexpression of PRMT5 was observed in human CML LSCs. Silencing PRMT5 with shRNA or blocking PRMT5 methyltransferase activity with the small-molecule inhibitor PJ-68 reduced survival, serial replating capacity, and long-term culture-initiating cells (LTC-ICs) in LSCs from CML patients. Further, PRMT5 knockdown or PJ-68 treatment dramatically prolonged survival in a murine model of retroviral BCR-ABL–driven CML and impaired the in vivo self-renewal capacity of transplanted CML LSCs. PJ-68 also inhibited long-term engraftment of human CML CD34+ cells in immunodeficient mice. Moreover, inhibition of PRMT5 abrogated the Wnt/β-catenin pathway in CML CD34+ cells by depleting dishevelled homolog 3 (DVL3). This study suggests that epigenetic methylation modification on histone protein arginine residues is a regulatory mechanism to control self-renewal of LSCs and indicates that PRMT5 may represent a potential therapeutic target against LSCs.

Authors

Yanli Jin, Jingfeng Zhou, Fang Xu, Bei Jin, Lijing Cui, Yun Wang, Xin Du, Juan Li, Peng Li, Ruibao Ren, Jingxuan Pan

×

Figure 8

PRMT5 inhibition reduces long-term multilineage engraftment of human CML CD34+ cells in NSI mice.

Options: View larger image (or click on image) Download as PowerPoint
PRMT5 inhibition reduces long-term multilineage engraftment of human CML...
(A) Human CML CD34+ cells were treated with PJ-68 (25.0 μM) in vitro for 3 days and injected into sublethally irradiated (300 cGy) NSI mice. After 12 weeks, human multilineage engraftment was analyzed by flow cytometry. (B and C) The percentage (B) and the absolute number (C) of human CD45+ cells engrafted in the BM after transplantation of human CML CD34+ cells (1 × 106 cells/mouse) for 12 weeks. (D) The proportion of human CD45+ cells engrafted in the spleen at 12 weeks. (E) qRT-PCR analysis of BCR-ABL mRNA level in CD45+ cells engrafted in BM at 12 weeks. (F) The proportion of engraftment of human CD33, CD34, CD11B, CD14, and CD19 in BM. (G) Representative flow cytometry plots of human CD45 and CD33 expression in mice with cells from 1 of the 2 CML patients (n = 3 for control, n = 4 for PJ-68 treatment, each patient). *P < 0.05, **P < 0.01, ***P < 0.0001, 2-tailed Student’s t test.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts