Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
ESAT-6–dependent cytosolic pattern recognition drives noncognate tuberculosis control in vivo
Andreas Kupz, … , Roland Brosch, Stefan H.E. Kaufmann
Andreas Kupz, … , Roland Brosch, Stefan H.E. Kaufmann
Published April 25, 2016
Citation Information: J Clin Invest. 2016;126(6):2109-2122. https://doi.org/10.1172/JCI84978.
View: Text | PDF
Research Article Infectious disease

ESAT-6–dependent cytosolic pattern recognition drives noncognate tuberculosis control in vivo

  • Text
  • PDF
Abstract

IFN-γ is a critical mediator of host defense against Mycobacterium tuberculosis (Mtb) infection. Antigen-specific CD4+ T cells have long been regarded as the main producer of IFN-γ in tuberculosis (TB), and CD4+ T cell immunity is the main target of current TB vaccine candidates. However, given the recent failures of such a TB vaccine candidate in clinical trials, strategies to harness CD4-independent mechanisms of protection should be included in future vaccine design. Here, we have reported that noncognate IFN-γ production by Mtb antigen–independent memory CD8+ T cells and NK cells is protective during Mtb infection and evaluated the mechanistic regulation of IFN-γ production by these cells in vivo. Transfer of arenavirus- or protein-specific CD8+ T cells or NK cells reduced the mortality and morbidity rates of mice highly susceptible to TB in an IFN-γ–dependent manner. Secretion of IFN-γ by these cell populations required IL-18, sensing of mycobacterial viability, Mtb protein 6-kDa early secretory antigenic target–mediated (ESAT-6–mediated) cytosolic contact, and activation of NLR family pyrin domain–containing protein 3 (NLRP3) inflammasomes in CD11c+ cell subsets. Neutralization of IL-18 abrogated protection in susceptible recipient mice that had received noncognate cells. Moreover, improved Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccine–induced protection was lost in the absence of ESAT-6–dependent cytosolic contact. Our findings provide a comprehensive mechanistic framework for antigen-independent IFN-γ secretion in response to Mtb with critical implications for future intervention strategies against TB.

Authors

Andreas Kupz, Ulrike Zedler, Manuela Stäber, Carolina Perdomo, Anca Dorhoi, Roland Brosch, Stefan H.E. Kaufmann

×

Figure 7

Early control of Mtb infection by noncognate memory CD8+ T cells depends on IL-18.

Options: View larger image (or click on image) Download as PowerPoint
Early control of Mtb infection by noncognate memory CD8+ T cells depends...
Rag2–/–Il2rg–/– mice that had received OT-ITg cells 4 weeks earlier were infected with 200 CFU Mtb H37Rv via the aerosol route and treated weekly with either anti–IL-18 Ab or control IgG. Long-term survival (A), CFU in lung and spleen (B and C), a cytokine profile (F), as well as cell infiltrates (D and E) and iNOS expression in lung tissue (D) were assessed 27 days p.i. Results are presented as individual data points (B, C, and E), pooled data (mean ± SEM) (F), and representative images (D) of 12 (A) or 7 (B–F) mice per group from 2 pooled, independent experiments. *P < 0.05 and **P < 0.01 by log-rank (Mantel-Cox) test (A), unpaired, 2-tailed Student’s t test (B, C, and E), and 1-way ANOVA for each cytokine (F). Original magnification, ×50 (Giemsa), ×100 (TB-Fluor), ×200 (iNOS).

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts