Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Public T cell receptors confer high-avidity CD4 responses to HIV controllers
Daniela Benati, … , Fernando Arenzana-Seisdedos, Lisa A. Chakrabarti
Daniela Benati, … , Fernando Arenzana-Seisdedos, Lisa A. Chakrabarti
Published April 25, 2016
Citation Information: J Clin Invest. 2016;126(6):2093-2108. https://doi.org/10.1172/JCI83792.
View: Text | PDF
Research Article AIDS/HIV

Public T cell receptors confer high-avidity CD4 responses to HIV controllers

  • Text
  • PDF
Abstract

The rare patients who are able to spontaneously control HIV replication in the absence of therapy show signs of a particularly efficient cellular immune response. To identify the molecular determinants that underlie this response, we characterized the T cell receptor (TCR) repertoire directed at Gag293, the most immunoprevalent CD4 epitope in the HIV-1 capsid. HIV controllers from the ANRS CODEX cohort showed a highly skewed TCR repertoire that was characterized by a predominance of TRAV24 and TRBV2 variable genes, shared CDR3 motifs, and a high frequency of public clonotypes. The most prevalent public clonotypes generated TCRs with affinities at the higher end of values reported for naturally occurring TCRs. The high-affinity Gag293-specific TCRs were cross-restricted by up to 5 distinct HLA-DR alleles, accounting for the expression of these TCRs in HIV controllers of diverse genetic backgrounds. Transfer of these TCRs to healthy donor CD4+ T cells conferred high antigen sensitivity and polyfunctionality, thus recapitulating key features of the controller CD4 response. Transfer of a high-affinity Gag293-specific TCR also redirected CD8+ T cells to target HIV-1 capsid via nonconventional MHC II restriction. Together, these findings indicate that TCR clonotypes with superior functions are associated with HIV control. Amplification or transfer of such clonotypes may contribute to immunotherapeutic approaches aiming at a functional HIV cure.

Authors

Daniela Benati, Moran Galperin, Olivier Lambotte, Stéphanie Gras, Annick Lim, Madhura Mukhopadhyay, Alexandre Nouël, Kristy-Anne Campbell, Brigitte Lemercier, Mathieu Claireaux, Samia Hendou, Pierre Lechat, Pierre de Truchis, Faroudy Boufassa, Jamie Rossjohn, Jean-François Delfraissy, Fernando Arenzana-Seisdedos, Lisa A. Chakrabarti

×

Figure 6

Public TCR transfer confers high antigen sensitivity to J76 cells.

Options: View larger image (or click on image) Download as PowerPoint
Public TCR transfer confers high antigen sensitivity to J76 cells.
(A an...
(A and B) Antigen sensitivity assay in TCR-transduced J76 cells. Percentages of CD69 expression in J76 cells transduced with TCRs F24, F25, or F5 (A) or with F4 or F13 (B), after coculture with L cells expressing different HLA-DR alleles (DR11, DR15, DRB5, or DR11) and loaded with decreasing Gag293 concentrations. (C) Antigen sensitivity assay of TCRs HD5 and HY9 from HAART patients. -NS, not stimulated. (A–C) Experiments were conducted in triplicate, with curves corresponding to one experiment shown for clarity. (D) Correlation between binding affinity (log Kdeq) for Gag293-loaded HLA-DR monomers (DR11, DRB5, and DR1) and antigen sensitivity (log EC50 for CD69 induction) of the F24, F25, and F5 TCRs. (E) Correlation between the antigen sensitivity (log EC50) measured for 8 HIC TCRs (described in Supplemental Table 11) in the presence of DR11 APCs and the number of HLA-DR alleles restricting these TCRs. (D and E) r, linear regression coefficient; P value: probability that the slope estimated by linear regression is significantly non-zero. (F) TCR reactivity to native HIV-1 capsid antigens. CD69 induction was quantified in TCR-transduced J76 cells cocultured with dendritic cells infected with the VSV-pseudotyped virus ΨHIV-1 (solid bars) or left uninfected (striped bars). One representative experiment of 3 is shown.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts