Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Insulin restores neuronal nitric oxide synthase expression and function that is lost in diabetic gastropathy
Crystal C. Watkins, … , Solomon H. Snyder, Christopher D. Ferris
Crystal C. Watkins, … , Solomon H. Snyder, Christopher D. Ferris
Published August 1, 2000
Citation Information: J Clin Invest. 2000;106(3):373-384. https://doi.org/10.1172/JCI8273.
View: Text | PDF | Corrigendum
Article

Insulin restores neuronal nitric oxide synthase expression and function that is lost in diabetic gastropathy

  • Text
  • PDF
Abstract

Gastrointestinal dysfunction is common in diabetic patients. In genetic (nonobese diabetic) and toxin-elicited (streptozotocin) models of diabetes in mice, we demonstrate defects in gastric emptying and nonadrenergic, noncholinergic relaxation of pyloric muscle, which resemble defects in mice harboring a deletion of the neuronal nitric oxide synthase gene (nNOS). The diabetic mice manifest pronounced reduction in pyloric nNOS protein and mRNA. The decline of nNOS in diabetic mice does not result from loss of myenteric neurons. nNOS expression and pyloric function are restored to normal levels by insulin treatment. Thus diabetic gastropathy in mice reflects an insulin-sensitive reversible loss of nNOS. In diabetic animals, delayed gastric emptying can be reversed with a phosphodiesterase inhibitor, sildenafil. These findings have implications for novel therapeutic approaches and may clarify the etiology of diabetic gastropathy.

Authors

Crystal C. Watkins, Akira Sawa, Samie Jaffrey, Seth Blackshaw, Roxanne K. Barrow, Solomon H. Snyder, Christopher D. Ferris

×

Figure 5

Options: View larger image (or click on image) Download as PowerPoint
nNOS mRNA expression in the pyloric myenteric neurons is depleted in dia...
nNOS mRNA expression in the pyloric myenteric neurons is depleted in diabetic mice: reversal by insulin treatment. (a) In situ hybridization analysis of nNOS expression. nNOS mRNA expression is present in wild-type and depleted nNOS–/– pyloric myenteric neurons, whereas nNOS mRNA expression is significantly decreased in both NOD-diabetic and STZ-diabetic mice. (b) Quantification of nNOS mRNA expression. The number of positive nuclei for nNOS mRNA per hpf was determined for ten microscopic fields, for each treatment group, with SEM as shown by the error bars. These results have been obtained in two separate experiments with four to six mice per group. AP < 0.01 for nNOS–/– and STZ-diabetic samples compared with wild-type samples, for NOD-diabetic compared with NOD-prediabetic samples, for insulin-treated NOD-diabetic compared with NOD-diabetic samples, and for insulin-treated STZ-diabetic compared with STZ-diabetic specimens.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts