Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Schwann cells induce cancer cell dispersion and invasion
Sylvie Deborde, Tatiana Omelchenko, Anna Lyubchik, Yi Zhou, Shizhi He, William F. McNamara, Natalya Chernichenko, Sei-Young Lee, Fernando Barajas, Chun-Hao Chen, Richard L. Bakst, Efsevia Vakiani, Shuangba He, Alan Hall, Richard J. Wong
Sylvie Deborde, Tatiana Omelchenko, Anna Lyubchik, Yi Zhou, Shizhi He, William F. McNamara, Natalya Chernichenko, Sei-Young Lee, Fernando Barajas, Chun-Hao Chen, Richard L. Bakst, Efsevia Vakiani, Shuangba He, Alan Hall, Richard J. Wong
View: Text | PDF
Research Article Cell biology Oncology

Schwann cells induce cancer cell dispersion and invasion

  • Text
  • PDF
Abstract

Nerves enable cancer progression, as cancers have been shown to extend along nerves through the process of perineural invasion, which carries a poor prognosis. Furthermore, the innervation of some cancers promotes growth and metastases. It remains unclear, however, how nerves mechanistically contribute to cancer progression. Here, we demonstrated that Schwann cells promote cancer invasion through direct cancer cell contact. Histological evaluation of murine and human cancer specimens with perineural invasion uncovered a subpopulation of Schwann cells that associates with cancer cells. Coculture of cancer cells with dorsal root ganglion extracts revealed that Schwann cells direct cancer cells to migrate toward nerves and promote invasion in a contact-dependent manner. Upon contact, Schwann cells induced the formation of cancer cell protrusions in their direction and intercalated between the cancer cells, leading to cancer cell dispersion. The formation of these processes was dependent on Schwann cell expression of neural cell adhesion molecule 1 (NCAM1) and ultimately promoted perineural invasion. Moreover, NCAM1-deficient mice showed decreased neural invasion and less paralysis. Such Schwann cell behavior reflects normal Schwann cell programs that are typically activated in nerve repair but are instead exploited by cancer cells to promote perineural invasion and cancer progression.

Authors

Sylvie Deborde, Tatiana Omelchenko, Anna Lyubchik, Yi Zhou, Shizhi He, William F. McNamara, Natalya Chernichenko, Sei-Young Lee, Fernando Barajas, Chun-Hao Chen, Richard L. Bakst, Efsevia Vakiani, Shuangba He, Alan Hall, Richard J. Wong

×

Figure 10

Presence of NCAM1 in Schwann cells upon contact with tumor cells.

Options: View larger image (or click on image) Download as PowerPoint
Presence of NCAM1 in Schwann cells upon contact with tumor cells.
(A and...
(A and B) Schwann cells expressing NCAM1 (green) are found in contact with cancer cells in a human specimen of pancreatic adenocarcinoma. (A) Costaining with the Schwann cell marker S100 (red) and DAPI (blue), with corresponding H&E staining. Scale bar: 100 μm. (B) Costaining with GFAP (magenta) and DAPI (blue), with corresponding H&E staining. Scale bar: 50 μm. (C) NCAM1-GFP induces filopodia formation in HEI-286 Schwann cells and is enriched at the site of contact. HEI-286 cells expressing NCAM1-GFP (green) cocultured with MiaPaCa-2 F-RFP (red) cells (top left). NCAM1 is enriched at the site of contact with other HEI-286 and MiaPaCa-2 cells. Enlargement of the top image showing filopodia at the site of contact and enrichment of NCAM1 at the tip of the filopodia (bottom left). HEI-286 cells expressing F-GFP (green) cocultured with MiaPaCa-2 F-RFP (red) cells, showing zones of contact without long filopodia and without F-GFP enrichment (top right). Zone of contact between HEI-286 cells expressing NCAM1-GFP and MiaPaCa-2 cells expressing NCAM1-Cherry with intertwined filopodia (bottom right). Scale bar: 10 μm.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts