Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
CYP24 inhibition as a therapeutic target in FGF23-mediated renal phosphate wasting disorders
Xiuying Bai, Dengshun Miao, Sophia Xiao, Dinghong Qiu, René St-Arnaud, Martin Petkovich, Ajay Gupta, David Goltzman, Andrew C. Karaplis
Xiuying Bai, Dengshun Miao, Sophia Xiao, Dinghong Qiu, René St-Arnaud, Martin Petkovich, Ajay Gupta, David Goltzman, Andrew C. Karaplis
View: Text | PDF | Corrigendum
Research Article Endocrinology

CYP24 inhibition as a therapeutic target in FGF23-mediated renal phosphate wasting disorders

  • Text
  • PDF
Abstract

CYP24A1 (hereafter referred to as CYP24) enzymatic activity is pivotal in the inactivation of vitamin D metabolites. Basal renal and extrarenal CYP24 is usually low but is highly induced by its substrate 1,25-dihydroxyvitamin D. Unbalanced high and/or long-lasting CYP24 expression has been proposed to underlie diseases like chronic kidney disease, cancers, and psoriasis that otherwise should favorably respond to supplemental vitamin D. Using genetically modified mice, we have shown that renal phosphate wasting hypophosphatemic states arising from high levels of fibroblast growth factor 23 (FGF23) are also associated with increased renal Cyp24 expression, suggesting that elevated CYP24 activity is pivotal to the pathophysiology of these disorders. We therefore crossed 2 mouse strains, each with distinct etiology for high levels of circulating FGF23, onto a Cyp24-null background. Specifically, we evaluated Cyp24 deficiency in Hyp mice, the murine homolog of X-linked dominant hypophosphatemic rickets, and transgenic mice that overexpress a mutant FGF23 (FGF23R176Q) that is associated with the autosomal dominant form of hypophosphatemic rickets. Loss of Cyp24 in these murine models of human disease resulted in near-complete recovery of rachitic/osteomalacic bony abnormalities in the absence of any improvement in the serum biochemical profile. Moreover, treatment of Hyp and FGF23R1760-transgenic mice with the CYP24 inhibitor CTA102 also ameliorated their rachitic bones. Our results link CYP24 activity to the pathophysiology of FGF23-dependent renal phosphate wasting states and implicate pharmacologic CYP24 inhibition as a therapeutic adjunct for their treatment.

Authors

Xiuying Bai, Dengshun Miao, Sophia Xiao, Dinghong Qiu, René St-Arnaud, Martin Petkovich, Ajay Gupta, David Goltzman, Andrew C. Karaplis

×

Figure 9

Schematic representation of CYP24 action and inactivation in Hyp Y mice.

Options: View larger image (or click on image) Download as PowerPoint
Schematic representation of CYP24 action and inactivation in Hyp Y mice....
Left panel illustrates the role of CYP24 activity in Hyp Y mice. The preexisting FGF23 overactivity (green arrows) impairs CYP27B1 enzymatic action, while concurrently promoting that of CYP24 in renal and extrarenal tissues (bone, cartilage, parathyroid, kidney, duodenum), so that local tissue levels of 1,25(OH)2D decrease. This results in increased PTH secretion from the parathyroids and impairment of cellular differentiation and matrix mineralization at the bone and cartilage level. Cyp24 inactivation (right panel) increases cellular 1,25(OH)2D concentrations, thereby inhibiting PTH secretion and improving cellular differentiation and matrix mineralization at the bone and cartilage level, despite a further rise in circulating FGF23 levels. Hypocalcemia does not ensue, as rising local concentrations of 1,25(OH)2D in the duodenum and kidneys promote expression of transport proteins critical for calcium absorption and reabsorption, respectively.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts