Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Intrathecal bone marrow stromal cells inhibit neuropathic pain via TGF-β secretion
Gang Chen, … , Rou-Gang Xie, Ru-Rong Ji
Gang Chen, … , Rou-Gang Xie, Ru-Rong Ji
Published July 13, 2015
Citation Information: J Clin Invest. 2015;125(8):3226-3240. https://doi.org/10.1172/JCI80883.
View: Text | PDF
Research Article Neuroscience

Intrathecal bone marrow stromal cells inhibit neuropathic pain via TGF-β secretion

  • Text
  • PDF
Abstract

Neuropathic pain remains a pressing clinical problem. Here, we demonstrate that a local, intrathecal (i.t.) injection of bone marrow stromal cells (BMSCs) following lumbar puncture alleviates early- and late-phase neuropathic pain symptoms, such as allodynia and hyperalgesia, for several weeks in murine chronic constriction injury (CCI) and spared nerve injury models. Moreover, i.t. BMSCs reduced CCI-induced spontaneous pain and axonal injury of dorsal root ganglion (DRG) neurons and inhibited CCI-evoked neuroinflammation in DRGs and spinal cord tissues. BMSCs secreted TGF-β1 into the cerebrospinal fluid, and neutralization of TGF-β1, but not IL-10, reversed the analgesic effect of BMSCs. Conversely, i.t. administration of TGF-β1 potently inhibited neuropathic pain. TGF-β1 acted as a powerful neuromodulator and rapidly (within minutes) suppressed CCI-evoked spinal synaptic plasticity and DRG neuronal hyperexcitability via TGF-β receptor 1–mediated noncanonical signaling. Finally, nerve injury upregulated CXCL12 in lumbar L4–L6 DRGs, and this upregulation caused migration of i.t.-injected BMSCs to DRGs through the CXCL12 receptor CXCR4, which was expressed on BMSCs. BMSCs that migrated from the injection site survived at the border of DRGs for more than 2 months. Our findings support a paracrine mechanism by which i.t. BMSCs target CXCL12-producing DRGs to elicit neuroprotection and sustained neuropathic pain relief via TGF-β1 secretion.

Authors

Gang Chen, Chul-Kyu Park, Rou-Gang Xie, Ru-Rong Ji

×

Figure 3

BMSCs administered i.t. inhibit CCI-induced upregulation of ATF3 in DRGs and reduce CCI-induced downregulation of CGRP and IB4 in DRGs and the spinal cord dorsal horn.

Options: View larger image (or click on image) Download as PowerPoint
BMSCs administered i.t. inhibit CCI-induced upregulation of ATF3 in DRGs...
(A) Paradigm showing the timing of BMSC treatment (CCI day 4) and tissue collection (CCI day 8). (B–G) Inhibition of CCI-induced upregulation of ATF3 (B and C) and downregulation of IB4 and CGRP (D and E) in L4–L5 DRGs, as well as downregulation of IB4 and CGRP in the L4–L5 spinal cord dorsal horn (F and G) by i.t. injection of BMSCs (2.5 × 105 cells, 4 days after CCI). Scale bars: 50 μm (B, D, and F). Quantification results of ATF3 staining in DRGs (C), IB4 and CGRP staining in DRGs (E), and IB4 and CGRP staining in dorsal horns (G). *P < 0.05, compared with the sham or contralateral group; #P < 0.05; n = 4–5 mice/group. Statistical significance was determined by 1-way ANOVA, followed by Bonferroni’s post-hoc test. All data are expressed as the mean ± SEM.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts