Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Issue published August 3, 2015 Previous issue | Next issue

  • Volume 125, Issue 8
Go to section:
  • Op-Ed
  • Conversations with Giants in Medicine
  • Obituaries
  • Review
  • Commentaries
  • Research Articles
  • Retraction
  • Corrigenda

On the cover: Ankyrin-B mutation impairs metabolism

This month’s cover is an isosurface rendering of 3D confocal images showing enlarged lipid droplets (green) in differentiated adipocytes expressing the R1788W human AnkB variant (red), with nuclei shown in blue. On page 3087, Lorenzo et al. explore the mechanisms by which rare variants in ankyrin-B promote metabolic dysfunction. Image credit: Damaris N. Lorenzo.
Op-Ed
Inspiring the next generation of physician-scientists
Robert J. Lefkowitz
Robert J. Lefkowitz
Published August 3, 2015
Citation Information: J Clin Invest. 2015;125(8):2905-2907. https://doi.org/10.1172/JCI83222.
View: Text | PDF

Inspiring the next generation of physician-scientists

  • Text
  • PDF
Abstract

As academic physician-scientists, one of the most important things we do is mentor young trainee-scientists. There obviously is no one right way to mentor or a set of rules one can follow; it’s a very personal matter, and very much depends on one’s personality. For much of my career, I gave very little thought as to how I mentored my trainees or to whether I was any good at it. Like many investigators, perhaps, I was just too busy with the daily activities of research to consider how I was guiding my students. Here, I take a look back and reflect on my experiences as a mentor and the factors that I believe contribute to the success of trainees as independent scientists.

Authors

Robert J. Lefkowitz

×
Conversations with Giants in Medicine
A conversation with Stuart Kornfeld
Ushma S. Neill
Ushma S. Neill
Published August 3, 2015
Citation Information: J Clin Invest. 2015;125(8):2908-2909. https://doi.org/10.1172/JCI82628.
View: Text | PDF

A conversation with Stuart Kornfeld

  • Text
  • PDF
Abstract

Authors

Ushma S. Neill

×
Obituaries
A tribute to Norman Talal
Haralampos M. Moutsopoulos, … , Marilynn Talal, Paul H. Plotz
Haralampos M. Moutsopoulos, … , Marilynn Talal, Paul H. Plotz
Published July 13, 2015
Citation Information: J Clin Invest. 2015;125(8):2910-2911. https://doi.org/10.1172/JCI83241.
View: Text | PDF

A tribute to Norman Talal

  • Text
  • PDF
Abstract

Authors

Haralampos M. Moutsopoulos, Marilynn Talal, Paul H. Plotz

×

Aaron J. Marcus: in pursuit of perfection
Katherine A. Hajjar
Katherine A. Hajjar
Published July 13, 2015
Citation Information: J Clin Invest. 2015;125(8):2912-2913. https://doi.org/10.1172/JCI83303.
View: Text | PDF

Aaron J. Marcus: in pursuit of perfection

  • Text
  • PDF
Abstract

Authors

Katherine A. Hajjar

×
Review
MECP2 disorders: from the clinic to mice and back
Laura Marie Lombardi, … , Steven Andrew Baker, Huda Yahya Zoghbi
Laura Marie Lombardi, … , Steven Andrew Baker, Huda Yahya Zoghbi
Published August 3, 2015
Citation Information: J Clin Invest. 2015;125(8):2914-2923. https://doi.org/10.1172/JCI78167.
View: Text | PDF

MECP2 disorders: from the clinic to mice and back

  • Text
  • PDF
Abstract

Two severe, progressive neurological disorders characterized by intellectual disability, autism, and developmental regression, Rett syndrome and MECP2 duplication syndrome, result from loss and gain of function, respectively, of the same critical gene, methyl-CpG–binding protein 2 (MECP2). Neurons acutely require the appropriate dose of MECP2 to function properly but do not die in its absence or overexpression. Instead, neuronal dysfunction can be reversed in a Rett syndrome mouse model if MeCP2 function is restored. Thus, MECP2 disorders provide a unique window into the delicate balance of neuronal health, the power of mouse models, and the importance of chromatin regulation in mature neurons. In this Review, we will discuss the clinical profiles of MECP2 disorders, the knowledge acquired from mouse models of the syndromes, and how that knowledge is informing current and future clinical studies.

Authors

Laura Marie Lombardi, Steven Andrew Baker, Huda Yahya Zoghbi

×
Commentaries
Lymphatic vessel development: fluid flow and valve-forming cells
Tsutomu Kume
Tsutomu Kume
Published July 27, 2015
Citation Information: J Clin Invest. 2015;125(8):2924-2926. https://doi.org/10.1172/JCI83189.
View: Text | PDF

Lymphatic vessel development: fluid flow and valve-forming cells

  • Text
  • PDF
Abstract

Hemodynamic forces regulate many aspects of blood vessel disease and development, including susceptibility to atherosclerosis and remodeling of primary blood vessels into a mature vascular network. Vessels of the lymphatic circulatory system are also subjected to fluid flow–associated forces, but the molecular and cellular mechanisms by which these forces regulate the formation and maintenance of lymphatic vessels remain largely uncharacterized. This issue of the JCI includes two articles that begin to address how fluid flow influences lymphatic vessel development and function. Sweet et al. demonstrate that lymph flow is essential for the remodeling of primary lymphatic vessels, for ensuring the proper distribution of smooth muscle cells (SMCs), and for the development and maturation of lymphatic valves. Kazenwadel et al. show that flow-induced lymphatic valve development is initiated by the upregulation of GATA2, which has been linked to lymphedema in patients with Emberger syndrome. Together, these observations and future studies inspired by these results have potential to lead to the development of strategies for the treatment of lymphatic disorders.

Authors

Tsutomu Kume

×

Emerging roles for macrophages in cardiac injury: cytoprotection, repair, and regeneration
Nikolaos G. Frangogiannis
Nikolaos G. Frangogiannis
Published July 27, 2015
Citation Information: J Clin Invest. 2015;125(8):2927-2930. https://doi.org/10.1172/JCI83191.
View: Text | PDF

Emerging roles for macrophages in cardiac injury: cytoprotection, repair, and regeneration

  • Text
  • PDF
Abstract

The mammalian heart contains a population of resident macrophages that expands in response to myocardial infarction through the recruitment of monocytes. Infarct macrophages exhibit high phenotypic diversity and respond to microenvironmental cues by altering their functional properties and secretory profile. In this issue of the JCI, de Couto and colleagues demonstrate that infiltrating macrophages can be primed to acquire a cardioprotective phenotype in ischemic heart and exert this proactive effect through activation of an antiapoptotic program in cardiomyocytes. This study supports the growing body of evidence that suggests that macrophage subpopulations can be modulated to mediate cytoprotective, reparative, and even regenerative functions in the infarcted heart. The cellular mechanisms and molecular signals driving these macrophage phenotypes are yet unknown; however, harnessing the remarkable potential of the macrophage in regulating cell survival and tissue regeneration may hold therapeutic promise for myocardial infarction.

Authors

Nikolaos G. Frangogiannis

×

PTP1B: a new therapeutic target for Rett syndrome
Lutz Tautz
Lutz Tautz
Published July 27, 2015
Citation Information: J Clin Invest. 2015;125(8):2931-2934. https://doi.org/10.1172/JCI83192.
View: Text | PDF

PTP1B: a new therapeutic target for Rett syndrome

  • Text
  • PDF
Abstract

Rett syndrome (RTT) is an X-linked neurodevelopmental disorder that is characterized by successive loss of acquired cognitive, social, and motor skills and development of autistic behavior. RTT affects approximately 1 in 10,000 live female births and is the second most common cause of severe mental retardation in females, after Down syndrome. Currently, there is no cure or effective therapy for RTT. Approved treatment regimens are presently limited to supportive management of specific physical and mental disabilities. In this issue, Krishnan and colleagues reveal that the protein tyrosine phosphatase PTP1B is upregulated in patients with RTT and in murine models and provide strong evidence that targeting PTP1B has potential as a viable therapeutic strategy for the treatment of RTT.

Authors

Lutz Tautz

×
Research Articles
Pharmacological GLI2 inhibition prevents myofibroblast cell-cycle progression and reduces kidney fibrosis
Rafael Kramann, … , Sushrut S. Waikar, Benjamin D. Humphreys
Rafael Kramann, … , Sushrut S. Waikar, Benjamin D. Humphreys
Published July 20, 2015
Citation Information: J Clin Invest. 2015;125(8):2935-2951. https://doi.org/10.1172/JCI74929.
View: Text | PDF

Pharmacological GLI2 inhibition prevents myofibroblast cell-cycle progression and reduces kidney fibrosis

  • Text
  • PDF
Abstract

Chronic kidney disease is characterized by interstitial fibrosis and proliferation of scar-secreting myofibroblasts, ultimately leading to end-stage renal disease. The hedgehog (Hh) pathway transcriptional effectors GLI1 and GLI2 are expressed in myofibroblast progenitors; however, the role of these effectors during fibrogenesis is poorly understood. Here, we demonstrated that GLI2, but not GLI1, drives myofibroblast cell-cycle progression in cultured mesenchymal stem cell–like progenitors. In animals exposed to unilateral ureteral obstruction, Hh pathway suppression by expression of the GLI3 repressor in GLI1+ myofibroblast progenitors limited kidney fibrosis. Myofibroblast-specific deletion of Gli2, but not Gli1, also limited kidney fibrosis, and induction of myofibroblast-specific cell-cycle arrest mediated this inhibition. Pharmacologic targeting of this pathway with darinaparsin, an arsenical in clinical trials, reduced fibrosis through reduction of GLI2 protein levels and subsequent cell-cycle arrest in myofibroblasts. GLI2 overexpression rescued the cell-cycle effect of darinaparsin in vitro. While darinaparsin ameliorated fibrosis in WT and Gli1-KO mice, it was not effective in conditional Gli2-KO mice, supporting GLI2 as a direct darinaparsin target. The GLI inhibitor GANT61 also reduced fibrosis in mice. Finally, GLI1 and GLI2 were upregulated in the kidneys of patients with high-grade fibrosis. Together, these data indicate that GLI inhibition has potential as a therapeutic strategy to limit myofibroblast proliferation in kidney fibrosis.

Authors

Rafael Kramann, Susanne V. Fleig, Rebekka K. Schneider, Steven L. Fabian, Derek P. DiRocco, Omar Maarouf, Janewit Wongboonsin, Yoichiro Ikeda, Dirk Heckl, Steven L. Chang, Helmut G. Rennke, Sushrut S. Waikar, Benjamin D. Humphreys

×

Muscle-specific 4E-BP1 signaling activation improves metabolic parameters during aging and obesity
Shihyin Tsai, … , Albert R. La Spada, Brian K. Kennedy
Shihyin Tsai, … , Albert R. La Spada, Brian K. Kennedy
Published June 29, 2015
Citation Information: J Clin Invest. 2015;125(8):2952-2964. https://doi.org/10.1172/JCI77361.
View: Text | PDF

Muscle-specific 4E-BP1 signaling activation improves metabolic parameters during aging and obesity

  • Text
  • PDF
Abstract

Eukaryotic translation initiation factor 4E–binding protein 1 (4E-BP1) is a key downstream effector of mTOR complex 1 (mTORC1) that represses cap-dependent mRNA translation initiation by sequestering the translation initiation factor eIF4E. Reduced mTORC1 signaling is associated with life span extension and improved metabolic homeostasis, yet the downstream targets that mediate these benefits are unclear. Here, we demonstrated that enhanced 4E-BP1 activity in mouse skeletal muscle protects against age- and diet-induced insulin resistance and metabolic rate decline. Transgenic animals displayed increased energy expenditure; altered adipose tissue distribution, including reduced white adipose accumulation and preserved brown adipose mass; and were protected from hepatic steatosis. Skeletal muscle–specific 4E-BP1 mediated metabolic protection directly through increased translation of peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α) and enhanced respiratory function. Non–cell autonomous protection was through preservation of brown adipose tissue metabolism, which was increased in 4E-BP1 transgenic animals during normal aging and in a response to diet-induced type 2 diabetes. Adipose phenotypes may derive from enhanced skeletal muscle expression and secretion of the known myokine FGF21. Unlike skeletal muscle, enhanced adipose-specific 4E-BP1 activity was not protective but instead was deleterious in response to the same challenges. These findings indicate that regulation of 4E-BP1 in skeletal muscle may serve as an important conduit through which mTORC1 controls metabolism.

Authors

Shihyin Tsai, Joanna M. Sitzmann, Somasish G. Dastidar, Ariana A. Rodriguez, Stephanie L. Vu, Circe E. McDonald, Emmeline C. Academia, Monique N. O’Leary, Travis D. Ashe, Albert R. La Spada, Brian K. Kennedy

×

Increased H3K9me3 drives dedifferentiated phenotype via KLF6 repression in liposarcoma
Emily Z. Keung, … , Kunal Rai, Lynda Chin
Emily Z. Keung, … , Kunal Rai, Lynda Chin
Published July 20, 2015
Citation Information: J Clin Invest. 2015;125(8):2965-2978. https://doi.org/10.1172/JCI77976.
View: Text | PDF

Increased H3K9me3 drives dedifferentiated phenotype via KLF6 repression in liposarcoma

  • Text
  • PDF
Abstract

Liposarcoma (LPS) can be divided into 4 different subtypes, of which well-differentiated LPS (WDLPS) and dedifferentiated LPS (DDLPS) are the most common. WDLPS is typically low grade, whereas DDLPS is high grade, aggressive, and carries a worse prognosis. WDLPS and DDLPS frequently co-occur in patients. However, it is not clear whether DDLPS arises independently from WDLPS, or whether epigenomic alterations underly the histopathological differences of these subtypes. Here, we profiled 9 epigenetic marks in tumor samples from 151 patients with LPS and showed elevated trimethylation of histone H3 at Lys9 (H3K9me3) levels in DDLPS tumors. Integrated ChIP-seq and gene expression analyses of patient-derived cell lines revealed that H3K9me3 mediates differential regulation of genes involved in cellular differentiation and migration. Among these, Kruppel-like factor 6 (KLF6) was reduced in DDLPS, with increased H3K9me3 at associated regulatory regions. Pharmacologic inhibition of H3K9me3 with chaetocin decreased DDLPS proliferation and increased expression of the adipogenesis-associated factors PPARγ, CEBPα, and CEBPβ, suggesting that increased H3K9me3 may mediate DDLPS-associated aggressiveness and dedifferentiation properties. KLF6 overexpression partially phenocopied chaetocin treatment in DDLPS cells and induced phenotypic changes that were consistent with adipocytic differentiation, suggesting that the effects of increased H3K9me3 may be mediated through KLF6. In conclusion, we provide evidence of an epigenetic basis for the transition between WDLPS and DDLPS.

Authors

Emily Z. Keung, Kadir C. Akdemir, Ghadah A. Al Sannaa, Jeannine Garnett, Dina Lev, Keila E. Torres, Alexander J. Lazar, Kunal Rai, Lynda Chin

×

GATA2 is required for lymphatic vessel valve development and maintenance
Jan Kazenwadel, … , Hamish S. Scott, Natasha L. Harvey
Jan Kazenwadel, … , Hamish S. Scott, Natasha L. Harvey
Published July 27, 2015
Citation Information: J Clin Invest. 2015;125(8):2979-2994. https://doi.org/10.1172/JCI78888.
View: Text | PDF

GATA2 is required for lymphatic vessel valve development and maintenance

  • Text
  • PDF
Abstract

Heterozygous germline mutations in the zinc finger transcription factor GATA2 have recently been shown to underlie a range of clinical phenotypes, including Emberger syndrome, a disorder characterized by lymphedema and predisposition to myelodysplastic syndrome/acute myeloid leukemia (MDS/AML). Despite well-defined roles in hematopoiesis, the functions of GATA2 in the lymphatic vasculature and the mechanisms by which GATA2 mutations result in lymphedema have not been characterized. Here, we have provided a molecular explanation for lymphedema predisposition in a subset of patients with germline GATA2 mutations. Specifically, we demonstrated that Emberger-associated GATA2 missense mutations result in complete loss of GATA2 function, with respect to the capacity to regulate the transcription of genes that are important for lymphatic vessel valve development. We identified a putative enhancer element upstream of the key lymphatic transcriptional regulator PROX1 that is bound by GATA2, and the transcription factors FOXC2 and NFATC1. Emberger GATA2 missense mutants had a profoundly reduced capacity to bind this element. Conditional Gata2 deletion in mice revealed that GATA2 is required for both development and maintenance of lymphovenous and lymphatic vessel valves. Together, our data unveil essential roles for GATA2 in the lymphatic vasculature and explain why a select catalogue of human GATA2 mutations results in lymphedema.

Authors

Jan Kazenwadel, Kelly L. Betterman, Chan-Eng Chong, Philippa H. Stokes, Young K. Lee, Genevieve A. Secker, Yan Agalarov, Cansaran Saygili Demir, David M. Lawrence, Drew L. Sutton, Sebastien P. Tabruyn, Naoyuki Miura, Marjo Salminen, Tatiana V. Petrova, Jacqueline M. Matthews, Christopher N. Hahn, Hamish S. Scott, Natasha L. Harvey

×

Lymph flow regulates collecting lymphatic vessel maturation in vivo
Daniel T. Sweet, … , Peter F. Davies, Mark L. Kahn
Daniel T. Sweet, … , Peter F. Davies, Mark L. Kahn
Published July 27, 2015
Citation Information: J Clin Invest. 2015;125(8):2995-3007. https://doi.org/10.1172/JCI79386.
View: Text | PDF

Lymph flow regulates collecting lymphatic vessel maturation in vivo

  • Text
  • PDF
Abstract

Fluid shear forces have established roles in blood vascular development and function, but whether such forces similarly influence the low-flow lymphatic system is unknown. It has been difficult to test the contribution of fluid forces in vivo because mechanical or genetic perturbations that alter flow often have direct effects on vessel growth. Here, we investigated the functional role of flow in lymphatic vessel development using mice deficient for the platelet-specific receptor C-type lectin–like receptor 2 (CLEC2) as blood backfills the lymphatic network and blocks lymph flow in these animals. CLEC2-deficient animals exhibited normal growth of the primary mesenteric lymphatic plexus but failed to form valves in these vessels or remodel them into a structured, hierarchical network. Smooth muscle cell coverage (SMC coverage) of CLEC2-deficient lymphatic vessels was both premature and excessive, a phenotype identical to that observed with loss of the lymphatic endothelial transcription factor FOXC2. In vitro evaluation of lymphatic endothelial cells (LECs) revealed that low, reversing shear stress is sufficient to induce expression of genes required for lymphatic valve development and identified GATA2 as an upstream transcriptional regulator of FOXC2 and the lymphatic valve genetic program. These studies reveal that lymph flow initiates and regulates many of the key steps in collecting lymphatic vessel maturation and development.

Authors

Daniel T. Sweet, Juan M. Jiménez, Jeremy Chang, Paul R. Hess, Patricia Mericko-Ishizuka, Jianxin Fu, Lijun Xia, Peter F. Davies, Mark L. Kahn

×

MicroRNA-132 enhances transition from inflammation to proliferation during wound healing
Dongqing Li, … , Mona Ståhle, Ning Xu Landén
Dongqing Li, … , Mona Ståhle, Ning Xu Landén
Published June 29, 2015
Citation Information: J Clin Invest. 2015;125(8):3008-3026. https://doi.org/10.1172/JCI79052.
View: Text | PDF

MicroRNA-132 enhances transition from inflammation to proliferation during wound healing

  • Text
  • PDF
Abstract

Wound healing is a complex process that is characterized by an initial inflammatory phase followed by a proliferative phase. This transition is a critical regulatory point; however, the factors that mediate this process are not fully understood. Here, we evaluated microRNAs (miRs) in skin wound healing and characterized the dynamic change of the miRNome in human skin wounds. miR-132 was highly upregulated during the inflammatory phase of wound repair, predominantly expressed in epidermal keratinocytes, and peaked in the subsequent proliferative phase. TGF-β1 and TGF-β2 induced miR-132 expression in keratinocytes, and transcriptome analysis of these cells revealed that miR-132 regulates a large number of immune response– and cell cycle–related genes. In keratinocytes, miR-132 decreased the production of chemokines and the capability to attract leukocytes by suppressing the NF-κB pathway. Conversely, miR-132 increased activity of the STAT3 and ERK pathways, thereby promoting keratinocyte growth. Silencing of the miR-132 target heparin-binding EGF-like growth factor (HB-EGF) phenocopied miR-132 overexpression in keratinocytes. Using mouse and human ex vivo wound models, we found that miR-132 blockade delayed healing, which was accompanied by severe inflammation and deficient keratinocyte proliferation. Together, our results indicate that miR-132 is a critical regulator of skin wound healing that facilitates the transition from the inflammatory to the proliferative phase.

Authors

Dongqing Li, Aoxue Wang, Xi Liu, Florian Meisgen, Jacob Grünler, Ileana R. Botusan, Sampath Narayanan, Erdem Erikci, Xi Li, Lennart Blomqvist, Lei Du, Andor Pivarcsi, Enikö Sonkoly, Kamal Chowdhury, Sergiu-Bogdan Catrina, Mona Ståhle, Ning Xu Landén

×

Flow-dependent expression of ectonucleotide tri(di)phosphohydrolase-1 and suppression of atherosclerosis
Yogendra Kanthi, … , Hanjoong Jo, David J. Pinsky
Yogendra Kanthi, … , Hanjoong Jo, David J. Pinsky
Published June 29, 2015
Citation Information: J Clin Invest. 2015;125(8):3027-3036. https://doi.org/10.1172/JCI79514.
View: Text | PDF

Flow-dependent expression of ectonucleotide tri(di)phosphohydrolase-1 and suppression of atherosclerosis

  • Text
  • PDF
Abstract

The ability of cells to detect and respond to nucleotide signals in the local microenvironment is essential for vascular homeostasis. The enzyme ectonucleotide tri(di)phosphohydrolase-1 (ENTPD1, also known as CD39) on the surface of leukocytes and endothelial cells metabolizes locally released, intravascular ATP and ADP, thereby eliminating these prothrombotic and proinflammatory stimuli. Here, we evaluated the contribution of CD39 to atherogenesis in the apolipoprotein E–deficient (ApoE-deficient) mouse model of atherosclerosis. Compared with control ApoE-deficient animals, plaque burden was markedly increased along with circulating markers of platelet activation in Cd39+/–Apoe–/– mice fed a high-fat diet. Plaque analysis revealed stark regionalization of endothelial CD39 expression and function in Apoe–/– mice, with CD39 prominently expressed in atheroprotective, stable flow regions and diminished in atheroprone areas subject to disturbed flow. In mice, disturbed flow as the result of partial carotid artery ligation rapidly suppressed endothelial CD39 expression. Moreover, unidirectional laminar shear stress induced atheroprotective CD39 expression in human endothelial cells. CD39 induction was dependent upon the vascular transcription factor Krüppel-like factor 2 (KLF2) binding near the transcriptional start site of CD39. Together, these data establish CD39 as a regionalized regulator of atherogenesis that is driven by shear stress.

Authors

Yogendra Kanthi, Matthew C. Hyman, Hui Liao, Amy E. Baek, Scott H. Visovatti, Nadia R. Sutton, Sascha N. Goonewardena, Mithun K. Neral, Hanjoong Jo, David J. Pinsky

×

High IFN-γ and low SLPI mark severe asthma in mice and humans
Mahesh Raundhal, … , Prabir Ray, Anuradha Ray
Mahesh Raundhal, … , Prabir Ray, Anuradha Ray
Published June 29, 2015
Citation Information: J Clin Invest. 2015;125(8):3037-3050. https://doi.org/10.1172/JCI80911.
View: Text | PDF

High IFN-γ and low SLPI mark severe asthma in mice and humans

  • Text
  • PDF
Abstract

Severe asthma (SA) is a challenge to control, as patients are not responsive to high doses of systemic corticosteroids (CS). In contrast, mild-moderate asthma (MMA) is responsive to low doses of inhaled CS, indicating that Th2 cells, which are dominant in MMA, do not solely orchestrate SA development. Here, we analyzed broncholalveolar lavage cells isolated from MMA and SA patients and determined that IFN-γ (Th1) immune responses are exacerbated in the airways of individuals with SA, with reduced Th2 and IL-17 responses. We developed a protocol that recapitulates the complex immune response of human SA, including the poor response to CS, in a murine model. Compared with WT animals, Ifng–/– mice subjected to this SA model failed to mount airway hyperresponsiveness (AHR) without appreciable effect on airway inflammation. Conversely, AHR was not reduced in Il17ra–/– mice, although airway inflammation was lower. Computer-assisted pathway analysis tools linked IFN-γ to secretory leukocyte protease inhibitor (SLPI), which is expressed by airway epithelial cells, and IFN-γ inversely correlated with SLPI expression in SA patients and the mouse model. In mice subjected to our SA model, forced SLPI expression decreased AHR in the absence of CS, and it was further reduced when SLPI was combined with CS. Our study identifies a distinct immune response in SA characterized by a dysregulated IFN-γ/SLPI axis that affects lung function.

Authors

Mahesh Raundhal, Christina Morse, Anupriya Khare, Timothy B. Oriss, Jadranka Milosevic, John Trudeau, Rachael Huff, Joseph Pilewski, Fernando Holguin, Jay Kolls, Sally Wenzel, Prabir Ray, Anuradha Ray

×

B56δ-related protein phosphatase 2A dysfunction identified in patients with intellectual disability
Gunnar Houge, … , the Deciphering Developmental Disorders (DDD) study, Veerle Janssens
Gunnar Houge, … , the Deciphering Developmental Disorders (DDD) study, Veerle Janssens
Published July 13, 2015
Citation Information: J Clin Invest. 2015;125(8):3051-3062. https://doi.org/10.1172/JCI79860.
View: Text | PDF

B56δ-related protein phosphatase 2A dysfunction identified in patients with intellectual disability

  • Text
  • PDF
Abstract

Here we report inherited dysregulation of protein phosphatase activity as a cause of intellectual disability (ID). De novo missense mutations in 2 subunits of serine/threonine (Ser/Thr) protein phosphatase 2A (PP2A) were identified in 16 individuals with mild to severe ID, long-lasting hypotonia, epileptic susceptibility, frontal bossing, mild hypertelorism, and downslanting palpebral fissures. PP2A comprises catalytic (C), scaffolding (A), and regulatory (B) subunits that determine subcellular anchoring, substrate specificity, and physiological function. Ten patients had mutations within a highly conserved acidic loop of the PPP2R5D-encoded B56δ regulatory subunit, with the same E198K mutation present in 6 individuals. Five patients had mutations in the PPP2R1A-encoded scaffolding Aα subunit, with the same R182W mutation in 3 individuals. Some Aα cases presented with large ventricles, causing macrocephaly and hydrocephalus suspicion, and all cases exhibited partial or complete corpus callosum agenesis. Functional evaluation revealed that mutant A and B subunits were stable and uncoupled from phosphatase activity. Mutant B56δ was A and C binding–deficient, while mutant Aα subunits bound B56δ well but were unable to bind C or bound a catalytically impaired C, suggesting a dominant-negative effect where mutant subunits hinder dephosphorylation of B56δ-anchored substrates. Moreover, mutant subunit overexpression resulted in hyperphosphorylation of GSK3β, a B56δ-regulated substrate. This effect was in line with clinical observations, supporting a correlation between the ID degree and biochemical disturbance.

Authors

Gunnar Houge, Dorien Haesen, Lisenka E.L.M. Vissers, Sarju Mehta, Michael J. Parker, Michael Wright, Julie Vogt, Shane McKee, John L. Tolmie, Nuno Cordeiro, Tjitske Kleefstra, Marjolein H. Willemsen, Margot R.F. Reijnders, Siren Berland, Eli Hayman, Eli Lahat, Eva H. Brilstra, Koen L.I. van Gassen, Evelien Zonneveld-Huijssoon, Charlotte I. de Bie, Alexander Hoischen, Evan E. Eichler, Rita Holdhus, Vidar M. Steen, Stein Ove Døskeland, Matthew E. Hurles, David R. FitzPatrick, the Deciphering Developmental Disorders (DDD) study, Veerle Janssens

×

T lymphocytes and fractalkine contribute to myocardial ischemia/reperfusion injury in patients
Stephen E. Boag, … , Bernard Keavney, Ioakim Spyridopoulos
Stephen E. Boag, … , Bernard Keavney, Ioakim Spyridopoulos
Published July 13, 2015
Citation Information: J Clin Invest. 2015;125(8):3063-3076. https://doi.org/10.1172/JCI80055.
View: Text | PDF Clinical Research and Public Health

T lymphocytes and fractalkine contribute to myocardial ischemia/reperfusion injury in patients

  • Text
  • PDF
Abstract

BACKGROUND. Lymphocytes contribute to ischemia/reperfusion (I/R) injury in several organ systems, but their relevance in ST elevation myocardial infarction (STEMI) is unknown. Our goal was to characterize lymphocyte dynamics in individuals after primary percutaneous coronary intervention (PPCI), assess the prognostic relevance of these cells, and explore mechanisms of lymphocyte-associated injury.

METHODS. Lymphocyte counts were retrospectively analyzed in 1,377 STEMI patients, and the prognostic relevance of post-PPCI lymphopenia was assessed by Cox proportional hazards regression. Blood from 59 prospectively recruited STEMI patients undergoing PPCI was sampled, and leukocyte subpopulations were quantified. Microvascular obstruction (MVO), a component of I/R injury, was assessed using MRI.

RESULTS. In the retrospective cohort, lymphopenia was associated with a lower rate of survival at 3 years (82.8% vs. 96.3%, lowest vs. highest tertile; hazard ratio 2.42). In the prospective cohort, lymphocyte counts fell 90 minutes after reperfusion, primarily due to loss of T cells. CD8+ T cells decreased more than CD4+ T cells, and effector subsets exhibited the largest decline. The early decrease in effector T cell levels was greater in individuals that developed substantial MVO. The drop in T cell subsets correlated with expression of the fractalkine receptor CX3CR1 (r2 = 0.99, P = 0.006). Serum fractalkine concentration peaked at 90 minutes after reperfusion, coinciding with the T cell count nadir.

CONCLUSIONS. Lymphopenia following PPCI is associated with poor prognosis. Our data suggest that fractalkine contributes to lymphocyte shifts, which may influence development of MVO through the action of effector T cells.

TRIAL REGISTRATION. Not applicable.

FUNDING. British Heart Foundation (FS/12/31/29533) and National Institute of Health Research (NIHR) Newcastle Biomedical Research Centre.

Authors

Stephen E. Boag, Rajiv Das, Evgeniya V. Shmeleva, Alan Bagnall, Mohaned Egred, Nicholas Howard, Karim Bennaceur, Azfar Zaman, Bernard Keavney, Ioakim Spyridopoulos

×

P2Y2 and Gq/G11 control blood pressure by mediating endothelial mechanotransduction
ShengPeng Wang, … , Nina Wettschureck, Stefan Offermanns
ShengPeng Wang, … , Nina Wettschureck, Stefan Offermanns
Published July 13, 2015
Citation Information: J Clin Invest. 2015;125(8):3077-3086. https://doi.org/10.1172/JCI81067.
View: Text | PDF

P2Y2 and Gq/G11 control blood pressure by mediating endothelial mechanotransduction

  • Text
  • PDF
Abstract

Elevated blood pressure is a key risk factor for developing cardiovascular diseases. Blood pressure is largely determined by vasodilatory mediators, such as nitric oxide (NO), that are released from the endothelium in response to fluid shear stress exerted by the flowing blood. Previous work has identified several mechanotransduction signaling processes that are involved in fluid shear stress–induced endothelial effects, but how fluid shear stress initiates the response is poorly understood. Here, we evaluated human and bovine endothelial cells and found that the purinergic receptor P2Y2 and the G proteins Gq/G11 mediate fluid shear stress–induced endothelial responses, including [Ca2+]i transients, activation of the endothelial NO synthase (eNOS), phosphorylation of PECAM-1 and VEGFR-2, as well as activation of SRC and AKT. In response to fluid shear stress, endothelial cells released ATP, which activates the purinergic P2Y2 receptor. Mice with induced endothelium-specific P2Y2 or Gq/G11 deficiency lacked flow-induced vasodilation and developed hypertension that was accompanied by reduced eNOS activation. Together, our data identify P2Y2 and Gq/G11 as a critical endothelial mechanosignaling pathway that is upstream of previously described mechanotransduction processes and demonstrate that P2Y2 and Gq/G11 are required for basal endothelial NO formation, vascular tone, and blood pressure.

Authors

ShengPeng Wang, András Iring, Boris Strilic, Julián Albarrán Juárez, Harmandeep Kaur, Kerstin Troidl, Sarah Tonack, Joachim C. Burbiel, Christa E. Müller, Ingrid Fleming, Jon O. Lundberg, Nina Wettschureck, Stefan Offermanns

×

Ankyrin-B metabolic syndrome combines age-dependent adiposity with pancreatic β cell insufficiency
Damaris N. Lorenzo, … , Mingjie Zhang, Vann Bennett
Damaris N. Lorenzo, … , Mingjie Zhang, Vann Bennett
Published July 13, 2015
Citation Information: J Clin Invest. 2015;125(8):3087-3102. https://doi.org/10.1172/JCI81317.
View: Text | PDF

Ankyrin-B metabolic syndrome combines age-dependent adiposity with pancreatic β cell insufficiency

  • Text
  • PDF
Abstract

Rare functional variants of ankyrin-B have been implicated in human disease, including hereditary cardiac arrhythmia and type 2 diabetes (T2D). Here, we developed murine models to evaluate the metabolic consequences of these alterations in vivo. Specifically, we generated knockin mice that express either the human ankyrin-B variant R1788W, which is present in 0.3% of North Americans of mixed European descent and is associated with T2D, or L1622I, which is present in 7.5% of African Americans. Young AnkbR1788W/R1788W mice displayed primary pancreatic β cell insufficiency that was characterized by reduced insulin secretion in response to muscarinic agonists, combined with increased peripheral glucose uptake and concomitantly increased plasma membrane localization of glucose transporter 4 (GLUT4) in skeletal muscle and adipocytes. In contrast, older AnkbR1788W/R1788W and AnkbL1622I/L1622I mice developed increased adiposity, a phenotype that was reproduced in cultured adipocytes, and insulin resistance. GLUT4 trafficking was altered in animals expressing mutant forms of ankyrin-B, and we propose that increased cell surface expression of GLUT4 in skeletal muscle and fatty tissue of AnkbR1788W/R1788W mice leads to the observed age-dependent adiposity. Together, our data suggest that ankyrin-B deficiency results in a metabolic syndrome that combines primary pancreatic β cell insufficiency with peripheral insulin resistance and is directly relevant to the nearly one million North Americans bearing the R1788W ankyrin-B variant.

Authors

Damaris N. Lorenzo, Jane A. Healy, Janell Hostettler, Jonathan Davis, Jiayu Yang, Chao Wang, Hans Ewald Hohmeier, Mingjie Zhang, Vann Bennett

×

Pathogenesis of ELANE-mutant severe neutropenia revealed by induced pluripotent stem cells
Ramesh C. Nayak, … , Carolyn Lutzko, Jose A. Cancelas
Ramesh C. Nayak, … , Carolyn Lutzko, Jose A. Cancelas
Published July 20, 2015
Citation Information: J Clin Invest. 2015;125(8):3103-3116. https://doi.org/10.1172/JCI80924.
View: Text | PDF

Pathogenesis of ELANE-mutant severe neutropenia revealed by induced pluripotent stem cells

  • Text
  • PDF
Abstract

Severe congenital neutropenia (SCN) is often associated with inherited heterozygous point mutations in ELANE, which encodes neutrophil elastase (NE). However, a lack of appropriate models to recapitulate SCN has substantially hampered the understanding of the genetic etiology and pathobiology of this disease. To this end, we generated both normal and SCN patient–derived induced pluripotent stem cells (iPSCs), and performed genome editing and differentiation protocols that recapitulate the major features of granulopoiesis. Pathogenesis of ELANE point mutations was the result of promyelocyte death and differentiation arrest, and was associated with NE mislocalization and activation of the unfolded protein response/ER stress (UPR/ER stress). Similarly, high-dose G-CSF (or downstream signaling through AKT/BCL2) rescues the dysgranulopoietic defect in SCN patient–derived iPSCs through C/EBPβ-dependent emergency granulopoiesis. In contrast, sivelestat, an NE-specific small-molecule inhibitor, corrected dysgranulopoiesis by restoring normal intracellular NE localization in primary granules; ameliorating UPR/ER stress; increasing expression of CEBPA, but not CEBPB; and promoting promyelocyte survival and differentiation. Together, these data suggest that SCN disease pathogenesis includes NE mislocalization, which in turn triggers dysfunctional survival signaling and UPR/ER stress. This paradigm has the potential to be clinically exploited to achieve therapeutic responses using lower doses of G-CSF combined with targeting to correct NE mislocalization.

Authors

Ramesh C. Nayak, Lisa R. Trump, Bruce J. Aronow, Kasiani Myers, Parinda Mehta, Theodosia Kalfa, Ashley M. Wellendorf, C. Alexander Valencia, Patrick J. Paddison, Marshall S. Horwitz, H. Leighton Grimes, Carolyn Lutzko, Jose A. Cancelas

×

Fibrinolysis is essential for fracture repair and prevention of heterotopic ossification
Masato Yuasa, … , Justin M.M. Cates, Jonathan G. Schoenecker
Masato Yuasa, … , Justin M.M. Cates, Jonathan G. Schoenecker
Published July 27, 2015
Citation Information: J Clin Invest. 2015;125(8):3117-3131. https://doi.org/10.1172/JCI80313.
View: Text | PDF | Corrigendum

Fibrinolysis is essential for fracture repair and prevention of heterotopic ossification

  • Text
  • PDF
Abstract

Bone formation during fracture repair inevitably initiates within or around extravascular deposits of a fibrin-rich matrix. In addition to a central role in hemostasis, fibrin is thought to enhance bone repair by supporting inflammatory and mesenchymal progenitor egress into the zone of injury. However, given that a failure of efficient fibrin clearance can impede normal wound repair, the precise contribution of fibrin to bone fracture repair, whether supportive or detrimental, is unknown. Here, we employed mice with genetically and pharmacologically imposed deficits in the fibrin precursor fibrinogen and fibrin-degrading plasminogen to explore the hypothesis that fibrin is vital to the initiation of fracture repair, but impaired fibrin clearance results in derangements in bone fracture repair. In contrast to our hypothesis, fibrin was entirely dispensable for long-bone fracture repair, as healing fractures in fibrinogen-deficient mice were indistinguishable from those in control animals. However, failure to clear fibrin from the fracture site in plasminogen-deficient mice severely impaired fracture vascularization, precluded bone union, and resulted in robust heterotopic ossification. Pharmacological fibrinogen depletion in plasminogen-deficient animals restored a normal pattern of fracture repair and substantially limited heterotopic ossification. Fibrin is therefore not essential for fracture repair, but inefficient fibrinolysis decreases endochondral angiogenesis and ossification, thereby inhibiting fracture repair.

Authors

Masato Yuasa, Nicholas A. Mignemi, Jeffry S. Nyman, Craig L. Duvall, Herbert S. Schwartz, Atsushi Okawa, Toshitaka Yoshii, Gourab Bhattacharjee, Chenguang Zhao, Jesse E. Bible, William T. Obremskey, Matthew J. Flick, Jay L. Degen, Joey V. Barnett, Justin M.M. Cates, Jonathan G. Schoenecker

×

Defective glycosylation of coagulation factor XII underlies hereditary angioedema type III
Jenny Björkqvist, … , Coen Maas, Thomas Renné
Jenny Björkqvist, … , Coen Maas, Thomas Renné
Published July 20, 2015
Citation Information: J Clin Invest. 2015;125(8):3132-3146. https://doi.org/10.1172/JCI77139.
View: Text | PDF

Defective glycosylation of coagulation factor XII underlies hereditary angioedema type III

  • Text
  • PDF
Abstract

Hereditary angioedema type III (HAEIII) is a rare inherited swelling disorder that is associated with point mutations in the gene encoding the plasma protease factor XII (FXII). Here, we demonstrate that HAEIII-associated mutant FXII, derived either from HAEIII patients or recombinantly produced, is defective in mucin-type Thr309-linked glycosylation. Loss of glycosylation led to increased contact-mediated autoactivation of zymogen FXII, resulting in excessive activation of the bradykinin-forming kallikrein-kinin pathway. In contrast, both FXII-driven coagulation and the ability of C1-esterase inhibitor to bind and inhibit activated FXII were not affected by the mutation. Intravital laser-scanning microscopy revealed that, compared with control animals, both F12–/– mice reconstituted with recombinant mutant forms of FXII and humanized HAEIII mouse models with inducible liver-specific expression of Thr309Lys-mutated FXII exhibited increased contact-driven microvascular leakage. An FXII-neutralizing antibody abolished bradykinin generation in HAEIII patient plasma and blunted edema in HAEIII mice. Together, the results of this study characterize the mechanism of HAEIII and establish FXII inhibition as a potential therapeutic strategy to interfere with excessive vascular leakage in HAEIII and potentially alleviate edema due to other causes.

Authors

Jenny Björkqvist, Steven de Maat, Urs Lewandrowski, Antonio Di Gennaro, Chris Oschatz, Kai Schönig, Markus M. Nöthen, Christian Drouet, Hal Braley, Marc W. Nolte, Albert Sickmann, Con Panousis, Coen Maas, Thomas Renné

×

Macrophages mediate cardioprotective cellular postconditioning in acute myocardial infarction
Geoffrey de Couto, … , Moshe Arditi, Eduardo Marbán
Geoffrey de Couto, … , Moshe Arditi, Eduardo Marbán
Published July 27, 2015
Citation Information: J Clin Invest. 2015;125(8):3147-3162. https://doi.org/10.1172/JCI81321.
View: Text | PDF

Macrophages mediate cardioprotective cellular postconditioning in acute myocardial infarction

  • Text
  • PDF
Abstract

Ischemic injury in the heart induces an inflammatory cascade that both repairs damage and exacerbates scar tissue formation. Cardiosphere-derived cells (CDCs) are a stem-like population that is derived ex vivo from cardiac biopsies; they confer both cardioprotection and regeneration in acute myocardial infarction (MI). While the regenerative effects of CDCs in chronic settings have been studied extensively, little is known about how CDCs confer the cardioprotective process known as cellular postconditioning. Here, we used an in vivo rat model of ischemia/reperfusion (IR) injury–induced MI and in vitro coculture assays to investigate how CDCs protect stressed cardiomyocytes. Compared with control animals, animals that received CDCs 20 minutes after IR had reduced infarct size when measured at 48 hours. CDCs modified the myocardial leukocyte population after ischemic injury. Specifically, introduction of CDCs reduced the number of CD68+ macrophages, and these CDCs secreted factors that polarized macrophages toward a distinctive cardioprotective phenotype that was not M1 or M2. Systemic depletion of macrophages with clodronate abolished CDC-mediated cardioprotection. Using both in vitro coculture assays and a rat model of adoptive transfer after IR, we determined that CDC-conditioned macrophages attenuated cardiomyocyte apoptosis and reduced infarct size, thereby recapitulating the beneficial effects of CDC therapy. Together, our data indicate that CDCs limit acute injury by polarizing an effector macrophage population within the heart.

Authors

Geoffrey de Couto, Weixin Liu, Eleni Tseliou, Baiming Sun, Nupur Makkar, Hideaki Kanazawa, Moshe Arditi, Eduardo Marbán

×

PTP1B inhibition suggests a therapeutic strategy for Rett syndrome
Navasona Krishnan, … , Stephen D. Shea, Nicholas K. Tonks
Navasona Krishnan, … , Stephen D. Shea, Nicholas K. Tonks
Published July 27, 2015
Citation Information: J Clin Invest. 2015;125(8):3163-3177. https://doi.org/10.1172/JCI80323.
View: Text | PDF

PTP1B inhibition suggests a therapeutic strategy for Rett syndrome

  • Text
  • PDF
Abstract

The X-linked neurological disorder Rett syndrome (RTT) presents with autistic features and is caused primarily by mutations in a transcriptional regulator, methyl CpG–binding protein 2 (MECP2). Current treatment options for RTT are limited to alleviating some neurological symptoms; hence, more effective therapeutic strategies are needed. We identified the protein tyrosine phosphatase PTP1B as a therapeutic candidate for treatment of RTT. We demonstrated that the PTPN1 gene, which encodes PTP1B, was a target of MECP2 and that disruption of MECP2 function was associated with increased levels of PTP1B in RTT models. Pharmacological inhibition of PTP1B ameliorated the effects of MECP2 disruption in mouse models of RTT, including improved survival in young male (Mecp2–/y) mice and improved behavior in female heterozygous (Mecp2–/+) mice. We demonstrated that PTP1B was a negative regulator of tyrosine phosphorylation of the tyrosine kinase TRKB, the receptor for brain-derived neurotrophic factor (BDNF). Therefore, the elevated PTP1B that accompanies disruption of MECP2 function in RTT represents a barrier to BDNF signaling. Inhibition of PTP1B led to increased tyrosine phosphorylation of TRKB in the brain, which would augment BDNF signaling. This study presents PTP1B as a mechanism-based therapeutic target for RTT, validating a unique strategy for treating the disease by modifying signal transduction pathways with small-molecule drugs.

Authors

Navasona Krishnan, Keerthi Krishnan, Christopher R. Connors, Meng S. Choy, Rebecca Page, Wolfgang Peti, Linda Van Aelst, Stephen D. Shea, Nicholas K. Tonks

×

Chitinase 3–like–1 and its receptors in Hermansky-Pudlak syndrome–associated lung disease
Yang Zhou, … , Chun Geun Lee, Jack A. Elias
Yang Zhou, … , Chun Geun Lee, Jack A. Elias
Published June 29, 2015
Citation Information: J Clin Invest. 2015;125(8):3178-3192. https://doi.org/10.1172/JCI79792.
View: Text | PDF

Chitinase 3–like–1 and its receptors in Hermansky-Pudlak syndrome–associated lung disease

  • Text
  • PDF
Abstract

Hermansky-Pudlak syndrome (HPS) comprises a group of inherited disorders caused by mutations that alter the function of lysosome-related organelles. Pulmonary fibrosis is the major cause of morbidity and mortality in patients with subtypes HPS-1 and HPS-4, which both result from defects in biogenesis of lysosome-related organelle complex 3 (BLOC-3). The prototypic chitinase-like protein chitinase 3–like–1 (CHI3L1) plays a protective role in the lung by ameliorating cell death and stimulating fibroproliferative repair. Here, we demonstrated that circulating CHI3L1 levels are higher in HPS patients with pulmonary fibrosis compared with those who remain fibrosis free, and that these levels associate with disease severity. Using murine HPS models, we also determined that these animals have a defect in the ability of CHI3L1 to inhibit epithelial apoptosis but exhibit exaggerated CHI3L1-driven fibroproliferation, which together promote HPS fibrosis. These divergent responses resulted from differences in the trafficking and effector functions of two CHI3L1 receptors. Specifically, the enhanced sensitivity to apoptosis was due to abnormal localization of IL-13Rα2 as a consequence of dysfunctional BLOC-3–dependent membrane trafficking. In contrast, the fibrosis was due to interactions between CHI3L1 and the receptor CRTH2, which trafficked normally in BLOC-3 mutant HPS. These data demonstrate that CHI3L1-dependent pathways exacerbate pulmonary fibrosis and suggest CHI3L1 as a potential biomarker for pulmonary fibrosis progression and severity in HPS.

Authors

Yang Zhou, Chuan Hua He, Erica L. Herzog, Xueyan Peng, Chang-Min Lee, Tung H. Nguyen, Mridu Gulati, Bernadette R. Gochuico, William A. Gahl, Martin L. Slade, Chun Geun Lee, Jack A. Elias

×

Glucocorticoid receptor antagonism decreases alcohol seeking in alcohol-dependent individuals
Leandro F. Vendruscolo, … , Scott Edwards, Barbara J. Mason
Leandro F. Vendruscolo, … , Scott Edwards, Barbara J. Mason
Published June 29, 2015
Citation Information: J Clin Invest. 2015;125(8):3193-3197. https://doi.org/10.1172/JCI79828.
View: Text | PDF Brief Report

Glucocorticoid receptor antagonism decreases alcohol seeking in alcohol-dependent individuals

  • Text
  • PDF
Abstract

Alcoholism, or alcohol use disorder, is a major public health concern that is a considerable risk factor for morbidity and disability; therefore, effective treatments are urgently needed. Here, we demonstrated that the glucocorticoid receptor (GR) antagonist mifepristone reduces alcohol intake in alcohol-dependent rats but not in nondependent animals. Both systemic delivery and direct administration into the central nucleus of the amygdala, a critical stress-related brain region, were sufficient to reduce alcohol consumption in dependent animals. We also tested the use of mifepristone in 56 alcohol-dependent human subjects as part of a double-blind clinical and laboratory-based study. Relative to placebo, individuals who received mifepristone (600 mg daily taken orally for 1 week) exhibited a substantial reduction in alcohol-cued craving in the laboratory, and naturalistic measures revealed reduced alcohol consumption during the 1-week treatment phase and 1-week post-treatment phase in mifepristone-treated individuals. Mifepristone was well tolerated and improved liver-function markers. Together, these results support further exploration of GR antagonism via mifepristone as a therapeutic strategy for alcoholism.

Authors

Leandro F. Vendruscolo, David Estey, Vivian Goodell, Lauren G. Macshane, Marian L. Logrip, Joel E. Schlosburg, M. Adrienne McGinn, Eva R. Zamora-Martinez, Joseph K. Belanoff, Hazel J. Hunt, Pietro P. Sanna, Olivier George, George F. Koob, Scott Edwards, Barbara J. Mason

×

IL-34 mediates acute kidney injury and worsens subsequent chronic kidney disease
Jea-Hyun Baek, … , Marco Colonna, Vicki R. Kelley
Jea-Hyun Baek, … , Marco Colonna, Vicki R. Kelley
Published June 29, 2015
Citation Information: J Clin Invest. 2015;125(8):3198-3214. https://doi.org/10.1172/JCI81166.
View: Text | PDF

IL-34 mediates acute kidney injury and worsens subsequent chronic kidney disease

  • Text
  • PDF
Abstract

Macrophages (Mø) are integral in ischemia/reperfusion injury–incited (I/R-incited) acute kidney injury (AKI) that leads to fibrosis and chronic kidney disease (CKD). IL-34 and CSF-1 share a receptor (c-FMS), and both cytokines mediate Mø survival and proliferation but also have distinct features. CSF-1 is central to kidney repair and destruction. We tested the hypothesis that IL-34–dependent, Mø-mediated mechanisms promote persistent ischemia-incited AKI that worsens subsequent CKD. In renal I/R, the time-related magnitude of Mø-mediated AKI and subsequent CKD were markedly reduced in IL-34–deficient mice compared with controls. IL-34, c-FMS, and a second IL-34 receptor, protein-tyrosine phosphatase ζ (PTP-ζ) were upregulated in the kidney after I/R. IL-34 was generated by tubular epithelial cells (TECs) and promoted Mø-mediated TEC destruction during AKI that worsened subsequent CKD via 2 distinct mechanisms: enhanced intrarenal Mø proliferation and elevated BM myeloid cell proliferation, which increases circulating monocytes that are drawn into the kidney by chemokines. CSF-1 expression in TECs did not compensate for IL-34 deficiency. In patients, kidney transplants subject to I/R expressed IL-34, c-FMS, and PTP−ζ in TECs during AKI that increased with advancing injury. Moreover, IL-34 expression increased, along with more enduring ischemia in donor kidneys. In conclusion, IL-34-dependent, Mø-mediated, CSF-1 nonredundant mechanisms promote persistent ischemia-incited AKI that worsens subsequent CKD.

Authors

Jea-Hyun Baek, Rui Zeng, Julia Weinmann-Menke, M. Todd Valerius, Yukihiro Wada, Amrendra K. Ajay, Marco Colonna, Vicki R. Kelley

×

Azathioprine therapy selectively ablates human Vδ2+ T cells in Crohn’s disease
Neil E. McCarthy, … , James O. Lindsay, Andrew J. Stagg
Neil E. McCarthy, … , James O. Lindsay, Andrew J. Stagg
Published July 13, 2015
Citation Information: J Clin Invest. 2015;125(8):3215-3225. https://doi.org/10.1172/JCI80840.
View: Text | PDF

Azathioprine therapy selectively ablates human Vδ2+ T cells in Crohn’s disease

  • Text
  • PDF
Abstract

Tumor-derived and bacterial phosphoantigens are recognized by unconventional lymphocytes that express a Vγ9Vδ2 T cell receptor (Vδ2 T cells) and mediate host protection against microbial infections and malignancies. Vδ2 T cells are absent in rodents but readily populate the human intestine, where their function is largely unknown. Here, we assessed Vδ2 T cell phenotype and function by flow cytometry in blood and intestinal tissue from Crohn’s disease patients (CD patients) and healthy controls. Blood from CD patients included an increased percentage of gut-tropic integrin β7–expressing Vδ2 T cells, while “Th1-committed” CD27-expressing Vδ2 T cells were selectively depleted. A corresponding population of CD27+ Vδ2 T cells was present in mucosal biopsies from CD patients and produced elevated levels of TNFα compared with controls. In colonic mucosa from CD patients, Vδ2 T cell production of TNFα was reduced by pharmacological blockade of retinoic acid receptor-α (RARα) signaling, indicating that dietary vitamin metabolites can influence Vδ2 T cell function in inflamed intestine. Vδ2 T cells were ablated in blood and tissue from CD patients receiving azathioprine (AZA) therapy, and posttreatment Vδ2 T cell recovery correlated with time since drug withdrawal and inversely correlated with patient age. These results indicate that human Vδ2 T cells exert proinflammatory effects in CD that are modified by dietary vitamin metabolites and ablated by AZA therapy, which may help resolve intestinal inflammation but could increase malignancy risk by impairing systemic tumor surveillance.

Authors

Neil E. McCarthy, Charlotte R. Hedin, Theodore J. Sanders, Protima Amon, Inva Hoti, Ibrahim Ayada, Vidya Baji, Edward M. Giles, Martha Wildemann, Zora Bashir, Kevin Whelan, Ian Sanderson, James O. Lindsay, Andrew J. Stagg

×

Intrathecal bone marrow stromal cells inhibit neuropathic pain via TGF-β secretion
Gang Chen, … , Rou-Gang Xie, Ru-Rong Ji
Gang Chen, … , Rou-Gang Xie, Ru-Rong Ji
Published July 13, 2015
Citation Information: J Clin Invest. 2015;125(8):3226-3240. https://doi.org/10.1172/JCI80883.
View: Text | PDF

Intrathecal bone marrow stromal cells inhibit neuropathic pain via TGF-β secretion

  • Text
  • PDF
Abstract

Neuropathic pain remains a pressing clinical problem. Here, we demonstrate that a local, intrathecal (i.t.) injection of bone marrow stromal cells (BMSCs) following lumbar puncture alleviates early- and late-phase neuropathic pain symptoms, such as allodynia and hyperalgesia, for several weeks in murine chronic constriction injury (CCI) and spared nerve injury models. Moreover, i.t. BMSCs reduced CCI-induced spontaneous pain and axonal injury of dorsal root ganglion (DRG) neurons and inhibited CCI-evoked neuroinflammation in DRGs and spinal cord tissues. BMSCs secreted TGF-β1 into the cerebrospinal fluid, and neutralization of TGF-β1, but not IL-10, reversed the analgesic effect of BMSCs. Conversely, i.t. administration of TGF-β1 potently inhibited neuropathic pain. TGF-β1 acted as a powerful neuromodulator and rapidly (within minutes) suppressed CCI-evoked spinal synaptic plasticity and DRG neuronal hyperexcitability via TGF-β receptor 1–mediated noncanonical signaling. Finally, nerve injury upregulated CXCL12 in lumbar L4–L6 DRGs, and this upregulation caused migration of i.t.-injected BMSCs to DRGs through the CXCL12 receptor CXCR4, which was expressed on BMSCs. BMSCs that migrated from the injection site survived at the border of DRGs for more than 2 months. Our findings support a paracrine mechanism by which i.t. BMSCs target CXCL12-producing DRGs to elicit neuroprotection and sustained neuropathic pain relief via TGF-β1 secretion.

Authors

Gang Chen, Chul-Kyu Park, Rou-Gang Xie, Ru-Rong Ji

×

Aerosolized Ebola vaccine protects primates and elicits lung-resident T cell responses
Michelle Meyer, … , Peter L. Collins, Alexander Bukreyev
Michelle Meyer, … , Peter L. Collins, Alexander Bukreyev
Published July 13, 2015
Citation Information: J Clin Invest. 2015;125(8):3241-3255. https://doi.org/10.1172/JCI81532.
View: Text | PDF

Aerosolized Ebola vaccine protects primates and elicits lung-resident T cell responses

  • Text
  • PDF
Abstract

Direct delivery of aerosolized vaccines to the respiratory mucosa elicits both systemic and mucosal responses. This vaccine strategy has not been tested for Ebola virus (EBOV) or other hemorrhagic fever viruses. Here, we examined the immunogenicity and protective efficacy of an aerosolized human parainfluenza virus type 3–vectored vaccine that expresses the glycoprotein (GP) of EBOV (HPIV3/EboGP) delivered to the respiratory tract. Rhesus macaques were vaccinated with aerosolized HPIV3/EboGP, liquid HPIV3/EboGP, or an unrelated, intramuscular, Venezuelan equine encephalitis replicon vaccine expressing EBOV GP. Serum and mucosal samples from aerosolized HPIV3/EboGP recipients exhibited high EBOV-specific IgG, IgA, and neutralizing antibody titers, which exceeded or equaled titers observed in liquid recipients. The HPIV3/EboGP vaccine induced an EBOV-specific cellular response that was greatest in the lungs and yielded polyfunctional CD8+ T cells, including a subset that expressed CD103 (αE integrin), and CD4+ T helper cells that were predominately type 1. The magnitude of the CD4+ T cell response was greater in aerosol vaccinees. The HPIV3/EboGP vaccine produced a more robust cell-mediated and humoral immune response than the systemic replicon vaccine. Moreover, 1 aerosol HPIV3/EboGP dose conferred 100% protection to macaques exposed to EBOV. Aerosol vaccination represents a useful and feasible vaccination mode that can be implemented with ease in a filovirus disease outbreak situation.

Authors

Michelle Meyer, Tania Garron, Ndongala M. Lubaki, Chad E. Mire, Karla A. Fenton, Curtis Klages, Gene G. Olinger, Thomas W. Geisbert, Peter L. Collins, Alexander Bukreyev

×

Transcription factor ISL1 is essential for pacemaker development and function
Xingqun Liang, … , Yunfu Sun, Sylvia M. Evans
Xingqun Liang, … , Yunfu Sun, Sylvia M. Evans
Published July 20, 2015
Citation Information: J Clin Invest. 2015;125(8):3256-3268. https://doi.org/10.1172/JCI68257.
View: Text | PDF

Transcription factor ISL1 is essential for pacemaker development and function

  • Text
  • PDF
Abstract

The sinoatrial node (SAN) maintains a rhythmic heartbeat; therefore, a better understanding of factors that drive SAN development and function is crucial to generation of potential therapies, such as biological pacemakers, for sinus arrhythmias. Here, we determined that the LIM homeodomain transcription factor ISL1 plays a key role in survival, proliferation, and function of pacemaker cells throughout development. Analysis of several Isl1 mutant mouse lines, including animals harboring an SAN-specific Isl1 deletion, revealed that ISL1 within SAN is a requirement for early embryonic viability. RNA-sequencing (RNA-seq) analyses of FACS-purified cells from ISL1-deficient SANs revealed that a number of genes critical for SAN function, including those encoding transcription factors and ion channels, were downstream of ISL1. Chromatin immunoprecipitation assays performed with anti-ISL1 antibodies and chromatin extracts from FACS-purified SAN cells demonstrated that ISL1 directly binds genomic regions within several genes required for normal pacemaker function, including subunits of the L-type calcium channel, Ank2, and Tbx3. Other genes implicated in abnormal heart rhythm in humans were also direct ISL1 targets. Together, our results demonstrate that ISL1 regulates approximately one-third of SAN-specific genes, indicate that a combination of ISL1 and other SAN transcription factors could be utilized to generate pacemaker cells, and suggest ISL1 mutations may underlie sick sinus syndrome.

Authors

Xingqun Liang, Qingquan Zhang, Paola Cattaneo, Shaowei Zhuang, Xiaohui Gong, Nathanael J. Spann, Cizhong Jiang, Xinkai Cao, Xiaodong Zhao, Xiaoli Zhang, Lei Bu, Gang Wang, H.S. Vincent Chen, Tao Zhuang, Jie Yan, Peng Geng, Lina Luo, Indroneal Banerjee, Yihan Chen, Christopher K. Glass, Alexander C. Zambon, Ju Chen, Yunfu Sun, Sylvia M. Evans

×

IRE1α/XBP1-mediated branch of the unfolded protein response regulates osteoclastogenesis
Takahide Tohmonda, … , Yoshiaki Toyama, Keisuke Horiuchi
Takahide Tohmonda, … , Yoshiaki Toyama, Keisuke Horiuchi
Published July 20, 2015
Citation Information: J Clin Invest. 2015;125(8):3269-3279. https://doi.org/10.1172/JCI76765.
View: Text | PDF

IRE1α/XBP1-mediated branch of the unfolded protein response regulates osteoclastogenesis

  • Text
  • PDF
Abstract

The unfolded protein response (UPR) is a cellular adaptive mechanism that is activated in response to the accumulation of unfolded proteins in the endoplasmic reticulum. The inositol-requiring protein-1α/X-box–binding protein–mediated (IRE1α/XBP1-mediated) branch of the UPR is highly conserved and has also been shown to regulate various cell-fate decisions. Herein, we have demonstrated a crucial role for the IREα/XBP1-mediated arm of the UPR in osteoclast differentiation. Using murine models, we found that the conditional abrogation of IRE1α in bone marrow cells increases bone mass as the result of defective osteoclastic bone resorption. In osteoclast precursors, IRE1α was transiently activated during osteoclastogenesis, and suppression of the IRE1α/XBP1 pathway in these cells substantially inhibited the formation of multinucleated osteoclasts in vitro. We determined that XBP1 directly binds the promoter and induces transcription of the gene encoding the master regulator of osteoclastogenesis nuclear factor of activated T cells cytoplasmic 1 (NFATc1). Moreover, activation of IRE1α was partially dependent on Ca2+ oscillation mediated by inositol 1,4,5-trisphosphate receptors 2 and 3 (ITPR2 and ITPR3) in the endoplasmic reticulum, as pharmacological inhibition or deletion of these receptors markedly decreased Xbp1 mRNA processing. The present study thus reveals an intracellular pathway that integrates the UPR and osteoclast differentiation through activation of the IRE1α/XBP1 pathway.

Authors

Takahide Tohmonda, Masaki Yoda, Takao Iwawaki, Morio Matsumoto, Masaya Nakamura, Katsuhiko Mikoshiba, Yoshiaki Toyama, Keisuke Horiuchi

×

Med12 gain-of-function mutation causes leiomyomas and genomic instability
Priya Mittal, … , Urvashi Surti, Aleksandar Rajkovic
Priya Mittal, … , Urvashi Surti, Aleksandar Rajkovic
Published July 20, 2015
Citation Information: J Clin Invest. 2015;125(8):3280-3284. https://doi.org/10.1172/JCI81534.
View: Text | PDF Brief Report

Med12 gain-of-function mutation causes leiomyomas and genomic instability

  • Text
  • PDF
Abstract

Uterine leiomyomas are benign tumors that can cause pain, bleeding, and infertility in some women. Mediator complex subunit 12 (MED12) exon 2 variants are associated with uterine leiomyomas; however, the causality of MED12 variants, their genetic mode of action, and their role in genomic instability have not been established. Here, we generated a mouse model that conditionally expresses a Med12 missense variant (c.131G>A) in the uterus and demonstrated that this alteration alone promotes uterine leiomyoma formation and hyperplasia in both WT mice and animals harboring a uterine mesenchymal cell–specific Med12 deletion. Compared with WT animals, expression of Med12 c.131G>A in conditional Med12–KO mice resulted in earlier onset of leiomyoma lesions that were also greater in size. Moreover, leiomyomatous, Med12 c.131G>A variant–expressing uteri developed chromosomal rearrangements. Together, our results show that the common human leiomyoma–associated MED12 variant can cause leiomyomas in mice via a gain of function that drives genomic instability, which is frequently observed in human leiomyomas.

Authors

Priya Mittal, Yong-hyun Shin, Svetlana A. Yatsenko, Carlos A. Castro, Urvashi Surti, Aleksandar Rajkovic

×

Alefacept provides sustained clinical and immunological effects in new-onset type 1 diabetes patients
Mark R. Rigby, … , Mario R. Ehlers, the Immune Tolerance Network (ITN) T1DAL Study Group
Mark R. Rigby, … , Mario R. Ehlers, the Immune Tolerance Network (ITN) T1DAL Study Group
Published July 20, 2015
Citation Information: J Clin Invest. 2015;125(8):3285-3296. https://doi.org/10.1172/JCI81722.
View: Text | PDF Clinical Research and Public Health

Alefacept provides sustained clinical and immunological effects in new-onset type 1 diabetes patients

  • Text
  • PDF
Abstract

BACKGROUND. Type 1 diabetes (T1D) results from destruction of pancreatic β cells by autoreactive effector T cells. We hypothesized that the immunomodulatory drug alefacept would result in targeted quantitative and qualitative changes in effector T cells and prolonged preservation of endogenous insulin secretion by the remaining β cells in patients with newly diagnosed T1D.

METHODS. In a multicenter, randomized, double-blind, placebo-controlled trial, we compared alefacept (two 12-week courses of 15 mg/wk i.m., separated by a 12-week pause) with placebo in patients with recent onset of T1D. Endpoints were assessed at 24 months and included meal-stimulated C-peptide AUC, insulin use, hypoglycemic events, and immunologic responses.

RESULTS. A total of 49 patients were enrolled. At 24 months, or 15 months after the last dose of alefacept, both the 4-hour and the 2-hour C-peptide AUCs were significantly greater in the treatment group than in the control group (P = 0.002 and 0.015, respectively). Exogenous insulin requirements were lower (P = 0.002) and rates of major hypoglycemic events were about 50% reduced (P < 0.001) in the alefacept group compared with placebo at 24 months. There was no apparent between-group difference in glycemic control or adverse events. Alefacept treatment depleted CD4+ and CD8+ central memory T cells (Tcm) and effector memory T cells (Tem) (P < 0.01), preserved Tregs, increased the ratios of Treg to Tem and Tcm (P < 0.01), and increased the percentage of PD-1+CD4+ Tem and Tcm (P < 0.01).

CONCLUSIONS. In patients with newly diagnosed T1D, two 12-week courses of alefacept preserved C-peptide secretion, reduced insulin use and hypoglycemic events, and induced favorable immunologic profiles at 24 months, well over 1 year after cessation of therapy.

TRIAL REGISTRATION.https://clinicaltrials.gov/ NCT00965458.

FUNDING. NIH and Astellas.

Authors

Mark R. Rigby, Kristina M. Harris, Ashley Pinckney, Linda A. DiMeglio, Marc S. Rendell, Eric I. Felner, Jean M. Dostou, Stephen E. Gitelman, Kurt J. Griffin, Eva Tsalikian, Peter A. Gottlieb, Carla J. Greenbaum, Nicole A. Sherry, Wayne V. Moore, Roshanak Monzavi, Steven M. Willi, Philip Raskin, Lynette Keyes-Elstein, S. Alice Long, Sai Kanaparthi, Noha Lim, Deborah Phippard, Carol L. Soppe, Margret L. Fitzgibbon, James McNamara, Gerald T. Nepom, Mario R. Ehlers, the Immune Tolerance Network (ITN) T1DAL Study Group

×

Helicobacter urease–induced activation of the TLR2/NLRP3/IL-18 axis protects against asthma
Katrin N. Koch, … , Christian Taube, Anne Müller
Katrin N. Koch, … , Christian Taube, Anne Müller
Published July 27, 2015
Citation Information: J Clin Invest. 2015;125(8):3297-3302. https://doi.org/10.1172/JCI79337.
View: Text | PDF Brief Report

Helicobacter urease–induced activation of the TLR2/NLRP3/IL-18 axis protects against asthma

  • Text
  • PDF
Abstract

Inflammasome activation and caspase-1–dependent (CASP1-dependent) processing and secretion of IL-1β and IL-18 are critical events at the interface of the bacterial pathogen Helicobacter pylori with its host. Whereas IL-1β promotes Th1 and Th17 responses and gastric immunopathology, IL-18 is required for Treg differentiation, H. pylori persistence, and protection against allergic asthma, which is a hallmark of H. pylori–infected mice and humans. Here, we show that inflammasome activation in DCs requires the cytoplasmic sensor NLRP3 as well as induction of TLR2 signaling by H. pylori. Screening of an H. pylori transposon mutant library revealed that pro–IL-1β expression is induced by LPS from H. pylori, while the urease B subunit (UreB) is required for NLRP3 inflammasome licensing. UreB activates the TLR2-dependent expression of NLRP3, which represents a rate-limiting step in NLRP3 inflammasome assembly. ureB-deficient H. pylori mutants were defective for CASP1 activation in murine bone marrow–derived DCs, splenic DCs, and human blood-derived DCs. Despite colonizing the murine stomach, ureB mutants failed to induce IL-1β and IL-18 secretion and to promote Treg responses. Unlike WT H. pylori, ureB mutants were incapable of conferring protection against allergen-induced asthma in murine models. Together, these results indicate that the TLR2/NLRP3/CASP1/IL-18 axis is critical to H. pylori–specific immune regulation.

Authors

Katrin N. Koch, Mara L. Hartung, Sabine Urban, Andreas Kyburz, Anna S. Bahlmann, Judith Lind, Steffen Backert, Christian Taube, Anne Müller

×
Retraction
Targeted expression of a human pituitary tumor–derived isoform of FGF receptor-4 recapitulates pituitary tumorigenesis
Shereen Ezzat, … , Gillian E. Wu, Sylvia L. Asa
Shereen Ezzat, … , Gillian E. Wu, Sylvia L. Asa
Published August 3, 2015
Citation Information: J Clin Invest. 2015;125(8):3303-3303. https://doi.org/10.1172/JCI83399.
View: Text | PDF | Amended Article

Targeted expression of a human pituitary tumor–derived isoform of FGF receptor-4 recapitulates pituitary tumorigenesis

  • Text
  • PDF
Abstract

Authors

Shereen Ezzat, Lei Zheng, Xian-Feng Zhu, Gillian E. Wu, Sylvia L. Asa

×
Corrigenda
Reduction of ER stress via a chemical chaperone prevents disease phenotypes in a mouse model of primary open angle glaucoma
Gulab S. Zode, … , Edwin M. Stone, Val C. Sheffield
Gulab S. Zode, … , Edwin M. Stone, Val C. Sheffield
Published August 3, 2015
Citation Information: J Clin Invest. 2015;125(8):3303-3303. https://doi.org/10.1172/JCI82799.
View: Text | PDF | Amended Article

Reduction of ER stress via a chemical chaperone prevents disease phenotypes in a mouse model of primary open angle glaucoma

  • Text
  • PDF
Abstract

Authors

Gulab S. Zode, Markus H. Kuehn, Darryl Y. Nishimura, Charles C. Searby, Kabhilan Mohan, Sinisa D. Grozdanic, Kevin Bugge, Michael G. Anderson, Abbot F. Clark, Edwin M. Stone, Val C. Sheffield

×

mRNA deadenylation and telomere disease
Philip J. Mason, Monica Bessler
Philip J. Mason, Monica Bessler
Published August 3, 2015
Citation Information: J Clin Invest. 2015;125(8):3304-3304. https://doi.org/10.1172/JCI82903.
View: Text | PDF | Amended Article

mRNA deadenylation and telomere disease

  • Text
  • PDF
Abstract

Authors

Philip J. Mason, Monica Bessler

×

FOXP3+ regulatory T cell development and function require histone/protein deacetylase 3
Liqing Wang, … , Scott W. Hiebert, Wayne W. Hancock
Liqing Wang, … , Scott W. Hiebert, Wayne W. Hancock
Published August 3, 2015
Citation Information: J Clin Invest. 2015;125(8):3304-3304. https://doi.org/10.1172/JCI83084.
View: Text | PDF | Amended Article

FOXP3+ regulatory T cell development and function require histone/protein deacetylase 3

  • Text
  • PDF
Abstract

Authors

Liqing Wang, Yujie Liu, Rongxiang Han, Ulf H. Beier, Tricia R. Bhatti, Tatiana Akimova, Mark I. Greene, Scott W. Hiebert, Wayne W. Hancock

×

Kidney growth and hypertrophy: the role of mTOR and vesicle trafficking
Qais Al-Awqati
Qais Al-Awqati
Published August 3, 2015
Citation Information: J Clin Invest. 2015;125(8):3304-3304. https://doi.org/10.1172/JCI83542.
View: Text | PDF | Amended Article

Kidney growth and hypertrophy: the role of mTOR and vesicle trafficking

  • Text
  • PDF
Abstract

Authors

Qais Al-Awqati

×
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts