Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Muscle-specific 4E-BP1 signaling activation improves metabolic parameters during aging and obesity
Shihyin Tsai, … , Albert R. La Spada, Brian K. Kennedy
Shihyin Tsai, … , Albert R. La Spada, Brian K. Kennedy
Published June 29, 2015
Citation Information: J Clin Invest. 2015;125(8):2952-2964. https://doi.org/10.1172/JCI77361.
View: Text | PDF
Research Article Metabolism

Muscle-specific 4E-BP1 signaling activation improves metabolic parameters during aging and obesity

  • Text
  • PDF
Abstract

Eukaryotic translation initiation factor 4E–binding protein 1 (4E-BP1) is a key downstream effector of mTOR complex 1 (mTORC1) that represses cap-dependent mRNA translation initiation by sequestering the translation initiation factor eIF4E. Reduced mTORC1 signaling is associated with life span extension and improved metabolic homeostasis, yet the downstream targets that mediate these benefits are unclear. Here, we demonstrated that enhanced 4E-BP1 activity in mouse skeletal muscle protects against age- and diet-induced insulin resistance and metabolic rate decline. Transgenic animals displayed increased energy expenditure; altered adipose tissue distribution, including reduced white adipose accumulation and preserved brown adipose mass; and were protected from hepatic steatosis. Skeletal muscle–specific 4E-BP1 mediated metabolic protection directly through increased translation of peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α) and enhanced respiratory function. Non–cell autonomous protection was through preservation of brown adipose tissue metabolism, which was increased in 4E-BP1 transgenic animals during normal aging and in a response to diet-induced type 2 diabetes. Adipose phenotypes may derive from enhanced skeletal muscle expression and secretion of the known myokine FGF21. Unlike skeletal muscle, enhanced adipose-specific 4E-BP1 activity was not protective but instead was deleterious in response to the same challenges. These findings indicate that regulation of 4E-BP1 in skeletal muscle may serve as an important conduit through which mTORC1 controls metabolism.

Authors

Shihyin Tsai, Joanna M. Sitzmann, Somasish G. Dastidar, Ariana A. Rodriguez, Stephanie L. Vu, Circe E. McDonald, Emmeline C. Academia, Monique N. O’Leary, Travis D. Ashe, Albert R. La Spada, Brian K. Kennedy

×

Figure 1

Activation of 4E-BP1 in mouse skeletal muscle leads to reduced body weight and atrophic white adipose tissue.

Options: View larger image (or click on image) Download as PowerPoint
Activation of 4E-BP1 in mouse skeletal muscle leads to reduced body weig...
(A) Body weight measurement in male mice (n = 8–20 per genotype). (B) Lean mass measurement in 2-month-old mice. (C) Analysis of the mean adipose cell cross-section area (CSA). (B and C) The number of mice analyzed is indicated in bars. (D) Representative images of hematoxylin and eosin–stained male white adipose tissue sections from skin, visceral fat, and inguinal fat of 4E-BP1 double-transgenic mice fed a normal chow diet. Scale bar: 100 μm; 50 μm (insets). P values were assessed by 2-way ANOVA. Bonferroni post-tests were used to compare replicate means by row. **P < 0.01; ***P < 0.001.

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts