Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Kruppel-like factor 4 is critical for transcriptional control of cardiac mitochondrial homeostasis
Xudong Liao, … , Daniel P. Kelly, Mukesh K. Jain
Xudong Liao, … , Daniel P. Kelly, Mukesh K. Jain
Published August 4, 2015
Citation Information: J Clin Invest. 2015;125(9):3461-3476. https://doi.org/10.1172/JCI79964.
View: Text | PDF
Research Article Cardiology

Kruppel-like factor 4 is critical for transcriptional control of cardiac mitochondrial homeostasis

  • Text
  • PDF
Abstract

Mitochondrial homeostasis is critical for tissue health, and mitochondrial dysfunction contributes to numerous diseases, including heart failure. Here, we have shown that the transcription factor Kruppel-like factor 4 (KLF4) governs mitochondrial biogenesis, metabolic function, dynamics, and autophagic clearance. Adult mice with cardiac-specific Klf4 deficiency developed cardiac dysfunction with aging or in response to pressure overload that was characterized by reduced myocardial ATP levels, elevated ROS, and marked alterations in mitochondrial shape, size, ultrastructure, and alignment. Evaluation of mitochondria isolated from KLF4-deficient hearts revealed a reduced respiration rate that is likely due to defects in electron transport chain complex I. Further, cardiac-specific, embryonic Klf4 deletion resulted in postnatal premature mortality, impaired mitochondrial biogenesis, and altered mitochondrial maturation. We determined that KLF4 binds to, cooperates with, and is requisite for optimal function of the estrogen-related receptor/PPARγ coactivator 1 (ERR/PGC-1) transcriptional regulatory module on metabolic and mitochondrial targets. Finally, we found that KLF4 regulates autophagy flux through transcriptional regulation of a broad array of autophagy genes in cardiomyocytes. Collectively, these findings identify KLF4 as a nodal transcriptional regulator of mitochondrial homeostasis.

Authors

Xudong Liao, Rongli Zhang, Yuan Lu, Domenick A. Prosdocimo, Panjamaporn Sangwung, Lilei Zhang, Guangjin Zhou, Puneet Anand, Ling Lai, Teresa C. Leone, Hisashi Fujioka, Fang Ye, Mariana G. Rosca, Charles L. Hoppel, P. Christian Schulze, E. Dale Abel, Jonathan S. Stamler, Daniel P. Kelly, Mukesh K. Jain

×

Figure 4

Myocardial KLF4 is required for postnatal mitochondrial biogenesis and cardiac maturation.

Options: View larger image (or click on image) Download as PowerPoint
Myocardial KLF4 is required for postnatal mitochondrial biogenesis and c...
(A) Expression of KLF4 and PPARGC1A in human and mouse hearts. Prenatal data were used as controls. n = 4 for each data point. (B) Heart size and weight. (C) Heart contractility, as assessed by echocardiography. (B and C) n = 5–7 at 4 weeks of age. (D) Myocardium ultrastructure. Representative images are shown (n = 3 in each group). Scale bar: 1 μm. (E) Cardiac mitochondrial genomic DNA, as assessed by qPCR. Mitochondrial genome copies (mtDNA) were normalized to nuclear DNA content. n = 10 in each genotype. Dots showed qPCR results from 5 pairs of primers (mt-Nd1, mt-Nd4, mt-Co1, mt-Co2, and mt-Atp6). (F) Expression of genes encoded by the mitochondrial genome. Ndufb5, a nuclear-encoded gene, was included as control. (G) Protein levels of mitochondrial- and nuclear-encoded genes. Each lane represents one animal. (H) Acute knockdown or (I) overexpression of KLF4 in NRVMs affected expression of mitochondrial-encoded genes. Cox5b, a nuclear-encoded gene, was included as control. (J) Deficiency of cardiac KLF4 impaired the expression of genes that regulate mitochondrial dynamics. Heart samples: n = 10. NRVM samples: n = 3. DNA/RNA/protein analysis was performed with 2-week-old animals. *P < 0.05, Student’s t test with Bonferroni correction.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts