Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Activated mTORC1 promotes long-term cone survival in retinitis pigmentosa mice
Aditya Venkatesh, … , Markus A. Rüegg, Claudio Punzo
Aditya Venkatesh, … , Markus A. Rüegg, Claudio Punzo
Published March 23, 2015
Citation Information: J Clin Invest. 2015;125(4):1446-1458. https://doi.org/10.1172/JCI79766.
View: Text | PDF
Research Article Genetics Neuroscience Ophthalmology

Activated mTORC1 promotes long-term cone survival in retinitis pigmentosa mice

  • Text
  • PDF
Abstract

Retinitis pigmentosa (RP) is an inherited photoreceptor degenerative disorder that results in blindness. The disease is often caused by mutations in genes that are specific to rod photoreceptors; however, blindness results from the secondary loss of cones by a still unknown mechanism. Here, we demonstrated that the mammalian target of rapamycin complex 1 (mTORC1) is required to slow the progression of cone death during disease and that constitutive activation of mTORC1 in cones is sufficient to maintain cone function and promote long-term cone survival. Activation of mTORC1 in cones enhanced glucose uptake, retention, and utilization, leading to increased levels of the key metabolite NADPH. Moreover, cone death was delayed in the absence of the NADPH-sensitive cell death protease caspase 2, supporting the contribution of reduced NADPH in promoting cone death. Constitutive activation of mTORC1 preserved cones in 2 mouse models of RP, suggesting that the secondary loss of cones is caused mainly by metabolic deficits and is independent of a specific rod-associated mutation. Together, the results of this study address a longstanding question in the field and suggest that activating mTORC1 in cones has therapeutic potential to prolong vision in RP.

Authors

Aditya Venkatesh, Shan Ma, Yun Z. Le, Michael N. Hall, Markus A. Rüegg, Claudio Punzo

×

Figure 6

mTORC1 activation improves glucose metabolism in cones.

Options: View larger image (or click on image) Download as PowerPoint
mTORC1 activation improves glucose metabolism in cones.
(A) Immunofluore...
(A) Immunofluorescence analyses to detect the indicated proteins (red signal) on retinal flat mounts from 2-month-old rd1 mice harboring the indicated conditional alleles. Concurrent loss of TSC1 and RAPTOR abolished the increase in immunoreactivity seen upon loss of TSC1 alone (green signal indicates PNA; blue signal indicates nuclear DAPI). Scale bar: 20 mm. (B) NADPH measurements on whole retinal extracts at P21 from Tsc1fl/fl mice on WT and rd1-mutant backgrounds (ng/re, nanogram per retina). Error bars represent SD. *P < 0.05 by Student’s t est. Data are representative of 3 biological replicas, with 3 retinae per replica. (C) Representative images of OSs from WT (top panel) and rd1 Tsc1fl/fl mice (middle and bottom panels) at 2 months of age. (D) Quantification of OS length and width at the indicated time points. Error bars represent SD. ***P < 0.005 by Student’s t test. Data represent 40 measurements performed on 2 animals.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts