Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
CRALBP supports the mammalian retinal visual cycle and cone vision
Yunlu Xue, … , Joseph C. Corbo, Vladimir J. Kefalov
Yunlu Xue, … , Joseph C. Corbo, Vladimir J. Kefalov
Published January 20, 2015
Citation Information: J Clin Invest. 2015;125(2):727-738. https://doi.org/10.1172/JCI79651.
View: Text | PDF
Research Article Ophthalmology

CRALBP supports the mammalian retinal visual cycle and cone vision

  • Text
  • PDF
Abstract

Mutations in the cellular retinaldehyde–binding protein (CRALBP, encoded by RLBP1) can lead to severe cone photoreceptor–mediated vision loss in patients. It is not known how CRALBP supports cone function or how altered CRALBP leads to cone dysfunction. Here, we determined that deletion of Rlbp1 in mice impairs the retinal visual cycle. Mice lacking CRALBP exhibited M-opsin mislocalization, M-cone loss, and impaired cone-driven visual behavior and light responses. Additionally, M-cone dark adaptation was largely suppressed in CRALBP-deficient animals. While rearing CRALBP-deficient mice in the dark prevented the deterioration of cone function, it did not rescue cone dark adaptation. Adeno-associated virus–mediated restoration of CRALBP expression specifically in Müller cells, but not retinal pigment epithelial (RPE) cells, rescued the retinal visual cycle and M-cone sensitivity in knockout mice. Our results identify Müller cell CRALBP as a key component of the retinal visual cycle and demonstrate that this pathway is important for maintaining normal cone–driven vision and accelerating cone dark adaptation.

Authors

Yunlu Xue, Susan Q. Shen, Jonathan Jui, Alan C. Rupp, Leah C. Byrne, Samer Hattar, John G. Flannery, Joseph C. Corbo, Vladimir J. Kefalov

×

Figure 1

Deletion of CRALBP reduces photopic in vivo ERG–response amplitude and sensitivity.

Options: View larger image (or click on image) Download as PowerPoint
Deletion of CRALBP reduces photopic in vivo ERG–response amplitude and s...
(A) Representative in vivo cone ERG responses from control (black traces), Rlbp1–/– (red traces), and Rlbp1+/– (blue traces) mice. Test flash intensities increased from 2.27 × 10–2 cd × s/m2 (bottom traces) to 697 cd × s/m2 (top traces) in steps of approximately 0.5 log units. (B) Ensemble-averaged cone b-wave intensity-response curves for control (n = 10), Rlbp1–/– (n = 12), and Rlbp1+/– (n = 10) mice. (C) Cone b-wave intensity-response curves for control mice aged 6–7 weeks (black squares, n = 8) and 13–16 weeks (white squares, n = 10). (D) Cone b-wave intensity-response curves for Rlbp1–/– mice aged 6–7 weeks (red circles, n = 6) and 13–16 weeks (white circles, n = 6). Insets in B–D show the corresponding normalized (r/rmax) intensity-response curves. Results represent the mean ± SEM.
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts