Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Calcium release channel RyR2 regulates insulin release and glucose homeostasis
Gaetano Santulli, … , Alain Lacampagne, Andrew R. Marks
Gaetano Santulli, … , Alain Lacampagne, Andrew R. Marks
Published April 6, 2015
Citation Information: J Clin Invest. 2015;125(5):1968-1978. https://doi.org/10.1172/JCI79273.
View: Text | PDF | Corrigendum
Research Article Cardiology Metabolism

Calcium release channel RyR2 regulates insulin release and glucose homeostasis

  • Text
  • PDF
Abstract

The type 2 ryanodine receptor (RyR2) is a Ca2+ release channel on the endoplasmic reticulum (ER) of several types of cells, including cardiomyocytes and pancreatic β cells. In cardiomyocytes, RyR2-dependent Ca2+ release is critical for excitation-contraction coupling; however, a functional role for RyR2 in β cell insulin secretion and diabetes mellitus remains controversial. Here, we took advantage of rare RyR2 mutations that were identified in patients with a genetic form of exercise-induced sudden death (catecholaminergic polymorphic ventricular tachycardia [CPVT]). As these mutations result in a “leaky” RyR2 channel, we exploited them to assess RyR2 channel function in β cell dynamics. We discovered that CPVT patients with mutant leaky RyR2 present with glucose intolerance, which was heretofore unappreciated. In mice, transgenic expression of CPVT-associated RyR2 resulted in impaired glucose homeostasis, and an in-depth evaluation of pancreatic islets and β cells from these animals revealed intracellular Ca2+ leak via oxidized and nitrosylated RyR2 channels, activated ER stress response, mitochondrial dysfunction, and decreased fuel-stimulated insulin release. Additionally, we verified the effects of the pharmacological inhibition of intracellular Ca2+ leak in CPVT-associated RyR2-expressing mice, in human islets from diabetic patients, and in an established murine model of type 2 diabetes mellitus. Taken together, our data indicate that RyR2 channels play a crucial role in the regulation of insulin secretion and glucose homeostasis.

Authors

Gaetano Santulli, Gennaro Pagano, Celestino Sardu, Wenjun Xie, Steven Reiken, Salvatore Luca D’Ascia, Michele Cannone, Nicola Marziliano, Bruno Trimarco, Theresa A. Guise, Alain Lacampagne, Andrew R. Marks

×

Figure 2

Leaky RyR2 channels cause impaired insulin secretion.

Options: View larger image (or click on image) Download as PowerPoint
Leaky RyR2 channels cause impaired insulin secretion.
(A) Representative...
(A) Representative images of pancreatic islets from WT, RyR2-R2474S, and RyR2-N2386I mice stained for insulin (red) and glucagon (yellow). Original magnification, ×63. Scale bars: 200 μm. Pancreatic weight (B), islet density (C) and size (D), ratio of Σ insulin area/Σ islet area (E), β cell mass (F), and insulin content (G). Data are expressed as mean ± SEM. Additional details are given in Methods. (G–J) Insulin release in response to glucose (H), leucine plus glutamine (I), or glyburide (J) evaluated ex vivo in pancreatic islets isolated from WT and CPVT mice undergoing S107 (50 mg/kg/d, 4 weeks) or vehicle treatment. Data are expressed as mean ± SEM. n = 6–10 animals/group. *P < 0.05 vs. WT, ANOVA, Tukey-Kramer post hoc correction.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts