Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Inflammation drives thrombosis after Salmonella infection via CLEC-2 on platelets
Jessica R. Hitchcock, Charlotte N. Cook, Saeeda Bobat, Ewan A. Ross, Adriana Flores-Langarica, Kate L. Lowe, Mahmood Khan, C. Coral Dominguez-Medina, Sian Lax, Manuela Carvalho-Gaspar, Stefan Hubscher, G. Ed Rainger, Mark Cobbold, Christopher D. Buckley, Tim J. Mitchell, Andrea Mitchell, Nick D. Jones, N. Van Rooijen, Daniel Kirchhofer, Ian R. Henderson, David H. Adams, Steve P. Watson, Adam F. Cunningham
Jessica R. Hitchcock, Charlotte N. Cook, Saeeda Bobat, Ewan A. Ross, Adriana Flores-Langarica, Kate L. Lowe, Mahmood Khan, C. Coral Dominguez-Medina, Sian Lax, Manuela Carvalho-Gaspar, Stefan Hubscher, G. Ed Rainger, Mark Cobbold, Christopher D. Buckley, Tim J. Mitchell, Andrea Mitchell, Nick D. Jones, N. Van Rooijen, Daniel Kirchhofer, Ian R. Henderson, David H. Adams, Steve P. Watson, Adam F. Cunningham
View: Text | PDF
Research Article Hematology

Inflammation drives thrombosis after Salmonella infection via CLEC-2 on platelets

  • Text
  • PDF
Abstract

Thrombosis is a common, life-threatening consequence of systemic infection; however, the underlying mechanisms that drive the formation of infection-associated thrombi are poorly understood. Here, using a mouse model of systemic Salmonella Typhimurium infection, we determined that inflammation in tissues triggers thrombosis within vessels via ligation of C-type lectin–like receptor-2 (CLEC-2) on platelets by podoplanin exposed to the vasculature following breaching of the vessel wall. During infection, mice developed thrombi that persisted for weeks within the liver. Bacteria triggered but did not maintain this process, as thrombosis peaked at times when bacteremia was absent and bacteria in tissues were reduced by more than 90% from their peak levels. Thrombus development was triggered by an innate, TLR4-dependent inflammatory cascade that was independent of classical glycoprotein VI–mediated (GPVI-mediated) platelet activation. After infection, IFN-γ release enhanced the number of podoplanin-expressing monocytes and Kupffer cells in the hepatic parenchyma and perivascular sites and absence of TLR4, IFN-γ, or depletion of monocytic-lineage cells or CLEC-2 on platelets markedly inhibited the process. Together, our data indicate that infection-driven thrombosis follows local inflammation and upregulation of podoplanin and platelet activation. The identification of this pathway offers potential therapeutic opportunities to control the devastating consequences of infection-driven thrombosis without increasing the risk of bleeding.

Authors

Jessica R. Hitchcock, Charlotte N. Cook, Saeeda Bobat, Ewan A. Ross, Adriana Flores-Langarica, Kate L. Lowe, Mahmood Khan, C. Coral Dominguez-Medina, Sian Lax, Manuela Carvalho-Gaspar, Stefan Hubscher, G. Ed Rainger, Mark Cobbold, Christopher D. Buckley, Tim J. Mitchell, Andrea Mitchell, Nick D. Jones, N. Van Rooijen, Daniel Kirchhofer, Ian R. Henderson, David H. Adams, Steve P. Watson, Adam F. Cunningham

×

Figure 5

TLR4 and IFN-γ mediate inflammation and thrombus development.

Options: View larger image (or click on image) Download as PowerPoint
TLR4 and IFN-γ mediate inflammation and thrombus development.
WT and Tlr...
WT and Tlr4–/– mice were infected i.p. as above for 7 days. (A) Leukocyte infiltration of the liver was examined by IHC: CD11c (brown), F4/80 (blue). (B) Thrombus development was assessed by H&E staining and (C) was quantified by point counting of large vessels per tissue section. (D) Platelet numbers and (E) mean platelet volume were determined in the blood. (F) WT mice were treated with 20 μg LPS, and thrombus development was examined in the liver after 7 days. WT and Ifng–/– mice were infected as above for 7 days, and (G) leukocyte infiltration of the liver was examined by IHC: CD11c (brown), F4/80 (blue). (H) Thrombus development was assessed by H&E staining and (I) was quantified as above. (J) Platelet numbers and (K) mean platelet volume were determined in the blood. Number of leukocytes isolated from the livers of infected WT and (L) Tlr4–/– or (M) Ifng–/– mice and (N and O) bacterial colonization of the liver were enumerated. (P) WT and Tlr4–/– mice were infected as above for 7 days, and leukocytes isolated from livers were cultured for 48 hours. Secreted IFN-γ was measured in culture supernatants by ELISA. Graphs show mean + SD. Experiments were performed at least twice, with each group containing ≥ 4 mice. Statistical significance was determined relative to WT mice. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001, Mann-Whitney sum of ranks test. ND, not detectable. All images are representative; black arrows indicate inflammatory lesions. Scale bars: 100 μm.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts