Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
GP96 is a GARP chaperone and controls regulatory T cell functions
Yongliang Zhang, … , Bei Liu, Zihai Li
Yongliang Zhang, … , Bei Liu, Zihai Li
Published January 20, 2015
Citation Information: J Clin Invest. 2015;125(2):859-869. https://doi.org/10.1172/JCI79014.
View: Text | PDF
Research Article Immunology

GP96 is a GARP chaperone and controls regulatory T cell functions

  • Text
  • PDF
Abstract

Molecular chaperones control a multitude of cellular functions via folding chaperone-specific client proteins. CD4+FOXP3+ Tregs play key roles in maintaining peripheral tolerance, which is subject to regulation by multiple molecular switches, including mTOR and hypoxia-inducible factor. It is not clear whether GP96 (also known as GRP94), which is a master TLR and integrin chaperone, controls Treg function. Using murine genetic models, we demonstrated that GP96 is required for Treg maintenance and function, as loss of GP96 resulted in instability of the Treg lineage and impairment of suppressive functions in vivo. In the absence of GP96, Tregs were unable to maintain FOXP3 expression levels, resulting in systemic accumulation of pathogenic IFN-γ–producing and IL-17–producing T cells. We determined that GP96 serves as an essential chaperone for the cell-surface protein glycoprotein A repetitions predominant (GARP), which is a docking receptor for latent membrane–associated TGF-β (mLTGF-β). The loss of both GARP and integrins on GP96-deficient Tregs prevented expression of mLTGF-β and resulted in inefficient production of active TGF-β. Our work demonstrates that GP96 regulates multiple facets of Treg biology, thereby placing Treg stability and immunosuppressive functions strategically under the control of a major stress chaperone.

Authors

Yongliang Zhang, Bill X. Wu, Alessandra Metelli, Jessica E. Thaxton, Feng Hong, Saleh Rachidi, Ephraim Ansa-Addo, Shaoli Sun, Chenthamarakshan Vasu, Yi Yang, Bei Liu, Zihai Li

×

Figure 1

Foxp3-Cre–mediated Hsp90b1 deletion in mice causes a fatal inflammatory disease.

Options: View larger image (or click on image) Download as PowerPoint
Foxp3-Cre–mediated Hsp90b1 deletion in mice causes a fatal inflammatory ...
(A) Rapid loss of body weight of KO mice (right) compared with WT littermates (left). (B) Survival rate of WT (n = 7), Het (n = 10), and KO (n = 18) mice. Mouse survival data was analyzed by a log-rank (Mantel-Cox) test. (C) H&E staining of sections of indicated organs from 7-week-old KO mice and WT littermates. Representative results from multiple mice (n > 3) are shown.
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts