Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Naturally selected hepatitis C virus polymorphisms confer broad neutralizing antibody resistance
Justin R. Bailey, Lisa N. Wasilewski, Anna E. Snider, Ramy El-Diwany, William O. Osburn, Zhenyong Keck, Steven K.H. Foung, Stuart C. Ray
Justin R. Bailey, Lisa N. Wasilewski, Anna E. Snider, Ramy El-Diwany, William O. Osburn, Zhenyong Keck, Steven K.H. Foung, Stuart C. Ray
View: Text | PDF
Research Article

Naturally selected hepatitis C virus polymorphisms confer broad neutralizing antibody resistance

  • Text
  • PDF
Abstract

For hepatitis C virus (HCV) and other highly variable viruses, broadly neutralizing mAbs are an important guide for vaccine development. The development of resistance to anti-HCV mAbs is poorly understood, in part due to a lack of neutralization testing against diverse, representative panels of HCV variants. Here, we developed a neutralization panel expressing diverse, naturally occurring HCV envelopes (E1E2s) and used this panel to characterize neutralizing breadth and resistance mechanisms of 18 previously described broadly neutralizing anti-HCV human mAbs. The observed mAb resistance could not be attributed to polymorphisms in E1E2 at known mAb-binding residues. Additionally, hierarchical clustering analysis of neutralization resistance patterns revealed relationships between mAbs that were not predicted by prior epitope mapping, identifying 3 distinct neutralization clusters. Using this clustering analysis and envelope sequence data, we identified polymorphisms in E2 that confer resistance to multiple broadly neutralizing mAbs. These polymorphisms, which are not at mAb contact residues, also conferred resistance to neutralization by plasma from HCV-infected subjects. Together, our method of neutralization clustering with sequence analysis reveals that polymorphisms at noncontact residues may be a major immune evasion mechanism for HCV, facilitating viral persistence and presenting a challenge for HCV vaccine development.

Authors

Justin R. Bailey, Lisa N. Wasilewski, Anna E. Snider, Ramy El-Diwany, William O. Osburn, Zhenyong Keck, Steven K.H. Foung, Stuart C. Ray

×

Figure 2

All neutralizing mAbs segregate into 3 neutralization clusters.

Options: View larger image (or click on image) Download as PowerPoint
All neutralizing mAbs segregate into 3 neutralization clusters.
A heat m...
A heat map was generated using pairwise correlations among all mAb resistance profiles. Circles at each intersection are scaled by the magnitude of the Spearman correlation (r) between neutralization profiles of the indicated mAbs, with darker blue indicating higher r values. Open circles indicate identity. *P < 0.05. Hierarchical clustering analysis using pairwise correlations of neutralization resistance patterns is depicted as a tree. Numbers at tree nodes are approximately unbiased (AU) test values(42), which indicate strength of support for a particular cluster.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts