Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Fatness and fertility: which direction?
Stephanie B. Seminara
Stephanie B. Seminara
Published June 17, 2014
Citation Information: J Clin Invest. 2014;124(7):2853-2854. https://doi.org/10.1172/JCI76623.
View: Text | PDF
Commentary

Fatness and fertility: which direction?

  • Text
  • PDF
Abstract

Metabolic status has long been thought to determine reproductive status, with abnormal metabolic phenotypes altering reproductive cascades, such as the onset of puberty. In this issue of the JCI, Tolson and colleagues provide evidence that kisspeptin, a hormone that promotes sexual maturation, regulates metabolism. Female mice lacking the kisspeptin receptor (KISS1R) gained more weight than control animals, and this weight gain was caused not by increased food consumption, but by an overall decrease in energy and metabolism. While this study provides a direct link between the kisspeptin pathway and metabolic output, more work will need to be done to determine whether alterations in this pathway contribute to human obesity.

Authors

Stephanie B. Seminara

×

Full Text PDF | Download (164.47 KB)

Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts