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Metabolic status has long been thought to determine reproductive status, with abnormal metabolic phenotypes altering
reproductive cascades, such as the onset of puberty. In this issue of the JC/, Tolson and colleagues provide evidence that
kisspeptin, a hormone that promotes sexual maturation, regulates metabolism. Female mice lacking the kisspeptin
receptor (KISS1R) gained more weight than control animals, and this weight gain was caused not by increased food
consumption, but by an overall decrease in energy and metabolism. While this study provides a direct link between the

kisspeptin pathway and metabolic output, more work will need to be done to determine whether alterations in this pathway
contribute to human obesity.
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Metabolic status has long been thought to determine reproductive status,
with abnormal metabolic phenotypes altering reproductive cascades, such
as the onset of puberty. In this issue of the JCI, Tolson and colleagues pro-
vide evidence that kisspeptin, a hormone that promotes sexual maturation,
regulates metabolism. Female mice lacking the kisspeptin receptor (KISS1R)
gained more weight than control animals, and this weight gain was caused
not by increased food consumption, but by an overall decrease in energy and
metabolism. While this study provides a direct link between the kisspeptin
pathway and metabolic output, more work will need to be done to determine
whether alterations in this pathway contribute to human obesity.

Leptin and kisspeptin: linking
metabolism and reproduction?

The concept that a minimum weight-to-
height ratio is necessary for the onset and
maintenance of menstrual cycles was first
introduced in the 1970s; however, uncover-
ing the physiologic pathways that connect
reproduction and metabolism has been
challenging (1, 2). In the 1990s, the dis-
covery that patients deficient for leptin (a
cell-signaling hormone critical for weight
regulation) or leptin signaling have abnor-
mal pubertal development led many to hail
leptin as the long-sought link between ener-
gy stores and reproductive function (3, 4).
Then in 2003, inactivating mutations in
the gene encoding the kisspeptin receptor
(KISS1R) were found to promote hypogo-
nadotropic hypogonadism in mice and
humans, catapulting the kisspeptin signal-
ing pathway into the spotlight as a criti-
cal stimulus for activating gonadotropin-
releasing hormone (GnRH) secretion and
initiation of the hypothalamic-pituitary-
gonadal cascade (5, 6). Through numer-
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ous neuroanatomic, electrophysiologic,
pharmacologic, and genetic studies, the
kisspeptin system was proven to be a key
element in reproductive maturation and
function. Soon after the discovery of kis-
speptin’s role in regulating reproduction,
investigators began to explore the possibil-
ity of a link between energy status and the
kisspeptin system. States of negative energy
balance, such as food deprivation, were
found to induce suppression of the hypo-
thalamic kisspeptin system, while admin-
istration of kisspeptin ameliorated the
reproductive failure associated with under-
nutrition (7). Furthermore, leptin admin-
istration to leptin-deficient mice increased
kisspeptin expression (8); therefore,
momentum grew for the hypothesis that
nutritional signals, such as leptin, acted
through kisspeptin-expressing neurons to
determine the timing of sexual maturation.

Enthusiasm for the hypothesis that
leptin and kisspeptin coordinate the onset
of sexual maturation dampened in 2011
following a report that selective deletion of
leptin receptors from kisspeptin-expressing
neurons did not affect sexual maturation
and fertility (9). This surprising finding
suggested that direct leptin action on kis-
speptin neurons is not required for puberty
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onset in mice; however, this study did not
eliminate that possibility that leptin-
dependent effects on reproduction are
indirectly transmitted through kisspeptin-
expressing neurons, potentially adding lay-
ers of complexity to the regulation of these
hypothalamic networks.

Metabolic status determines
reproduction — or does it?

As work on the relationship between
metabolism and kisspeptin progressed,
it appeared that the directional arrow in
this association begins with the metabolic
status of the organism (i.e., undernutri-
tion, overnutrition, or lactation), which
then leads to abnormal phenotypes in
the reproductive cascade (delayed puber-
ty or infertility). In this issue of the JCI,
Tolson et al. have turned this paradigm
on its head and present data suggesting
that perturbations in kisspeptin signal-
ing affect metabolism (10). Female, but
not male, mice lacking KISS1R weighed
significantly more than control ani-
mals. Furthermore, KissIr/~ females had
increased fat mass, hyperleptinemia,
higher fasting glucose, and impaired glu-
cose tolerance in the setting of reduced
metabolism and energy expenditure.
Moreover, ovariectomized KISS1R-defi-
cient females weighed more than ovari-
ectomized controls, which suggests that
the obesity phenotype is independent of
differences in gonadal steroids due to loss
of kisspeptin signaling.

Notably, weight differences between
Kiss1r/~ females and control animals
began to emerge at eight to ten weeks
of age and continued to increase out to
18 weeks (10). Unfortunately, there are
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almost no previously published data on
the body weight of mice lacking kisspeptin
or KISS1R well into adulthood. A previous
study reported that female mice lacking
kisspeptin-expressing cells had weights at
eight weeks that were comparable to the
weights reported by Tolson and colleagues;
however, this group did not extend their
measurements beyond the eight-week
timepoint (11). In another study, female
kisspeptin-knockout mice were reported to
be significantly smaller than their female
littermates at two months of age (12),
while a third group observed a decrease in
weight of KissIr/~ males compared with
WT and heterozygous littermates at nine
weeks, but no decrease or noticeable dif-
ference in Kisslr/~ females (13). During
our laboratory’s initial characterization of
Kiss17/~and KissIr/~ mice that we generated
by introducing ES cells from 129/S embry-
os into C57BL/6 blastocysts, crossing chi-
meras with 129/S1/Svim] females, and
interbreeding the heterozygotes to gener-
ate knockouts, we did not extend weight
measurements past nine to 12 weeks (14).
There was no overt difference in the weight
of these female mice. The mice used by Tol-
son et al. were created on a mixed C57BL/6
x 129/S1/SvIm] background (10); there-
fore, continued exploration of metabolic
consequences of perturbations in the kiss-
peptin signaling pathway will require stud-
ies using multiple strains of both male and
female KissI7/~ and KissIr/~ mice to further
dissect the contributions of strain, gender,
method of creation, and dependency on
kisspeptin signaling (ligand vs. receptor)
in this relationship.

Conclusions and future directions

While the revelation by Tolson and col-
leagues that disrupted kisspeptin signal-
ing promotes murine metabolic dysfunc-
tion is exciting, it is unclear whether this
weight phenotype is relevant to humans.
Unfortunately, very few patients with ter-
minating mutations of the genes encoding
either kisspeptin or its receptor have been
identified and described in the literature.
Although these few individuals were evalu-
ated at various ages, metabolic phenotypes
were not reported; it is assumed that overt
obesity would have been noted, but this
phenotype was not commented upon
(5, 15). Certainly, the need to phenotype
animal models over time is an increasingly
important theme in kisspeptin-neuroki-
nin B-dynorphin biology. An important
lesson emerging from these studies is
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that the reproductive phenotypes of both
humans and mice bearing mutations and/
or deletions in the kisspeptin pathway are
not always static. For example, KissI7~ and
Kiss1r7/~ mutant mice have a dynamic phe-
notype characterized by persistent GnRH
activity, which becomes more apparent
over time (16). Reproductive maturation
can occur in the absence of kisspeptin sig-
naling prior to certain windows in devel-
opment, presumably due to the emer-
gence of compensatory pathways (11). In
line with these observations, humans with
mutations in the neurokinin B signaling
pathway present with hypogonadotropism
at a young age, but have shown a reversal
of this phenotype as adults (17, 18). Thus,
the greater the phenotypic armamentari-
um used to study sexual maturation and
fertility, the greater the phenotypic com-
plexity that may emerge.

On a final point, interactions between
metabolic cues and kisspeptin signaling,
regardless of directionality, have largely
been envisioned as taking place within
hypothalamic networks. Little attention
to the role of kisspeptin in the periphery
has been paid until recently, when a hor-
monal circuit linking hyperglucagonemia,
hepatic kisspeptin secretion, and impaired
insulin secretion was uncovered (19).
Interestingly, in that circuit, kisspeptin
production, specifically in the liver, inhib-
ited glucose-dependent insulin secretion,
which suggests that impaired kisspeptin
signaling might actually stimulate insu-
lin secretion — a finding not observed by
Tolson et al. (10). Thus, kisspeptin’s role in
metabolic circuitry may be unique and dif-
ferentially influential in different tissues.

The interrelationship between repro-
duction and metabolism continues to
intrigue investigators and clinicians alike.
Studies able to dissect its directionality,
compensatory pathophysiology, underly-
ing genetic signatures, and central versus
peripheral inputs will be required to solve
its complexity.
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