Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Ketogenesis prevents diet-induced fatty liver injury and hyperglycemia
David G. Cotter, … , Gary J. Patti, Peter A. Crawford
David G. Cotter, … , Gary J. Patti, Peter A. Crawford
Published October 27, 2014
Citation Information: J Clin Invest. 2014;124(12):5175-5190. https://doi.org/10.1172/JCI76388.
View: Text | PDF
Research Article Hepatology

Ketogenesis prevents diet-induced fatty liver injury and hyperglycemia

  • Text
  • PDF
Abstract

Nonalcoholic fatty liver disease (NAFLD) spectrum disorders affect approximately 1 billion individuals worldwide. However, the drivers of progressive steatohepatitis remain incompletely defined. Ketogenesis can dispose of much of the fat that enters the liver, and dysfunction in this pathway could promote the development of NAFLD. Here, we evaluated mice lacking mitochondrial 3-hydroxymethylglutaryl CoA synthase (HMGCS2) to determine the role of ketogenesis in preventing diet-induced steatohepatitis. Antisense oligonucleotide–induced loss of HMGCS2 in chow-fed adult mice caused mild hyperglycemia, increased hepatic gluconeogenesis from pyruvate, and augmented production of hundreds of hepatic metabolites, a suite of which indicated activation of the de novo lipogenesis pathway. High-fat diet feeding of mice with insufficient ketogenesis resulted in extensive hepatocyte injury and inflammation, decreased glycemia, deranged hepatic TCA cycle intermediate concentrations, and impaired hepatic gluconeogenesis due to sequestration of free coenzyme A (CoASH). Supplementation of the CoASH precursors pantothenic acid and cysteine normalized TCA intermediates and gluconeogenesis in the livers of ketogenesis-insufficient animals. Together, these findings indicate that ketogenesis is a critical regulator of hepatic acyl-CoA metabolism, glucose metabolism, and TCA cycle function in the absorptive state and suggest that ketogenesis may modulate fatty liver disease.

Authors

David G. Cotter, Baris Ercal, Xiaojing Huang, Jamison M. Leid, D. André d’Avignon, Mark J. Graham, Dennis J. Dietzen, Elizabeth M. Brunt, Gary J. Patti, Peter A. Crawford

×

Figure 1

Ketogenic insufficiency in mice treated with HMGCS2 ASO.

Options: View larger image (or click on image) Download as PowerPoint
Ketogenic insufficiency in mice treated with HMGCS2 ASO.
(A) Immunoblot ...
(A) Immunoblot for HMGCS2 and actin using protein lysates derived from livers of neonatal mice treated with either a scrambled sequence control ASO or HMGCS2 ASO. Mice were treated with ASO daily for 11 days, beginning on the second day of life, and tissues and serum were collected on P12. Normalized protein abundance is quantified below. (B) Serum total ketone body (TKB) concentrations (mM) and (C) hepatic TAG concentrations (mg/g tissue) on P12 in ASO-treated mice n = 4–6/group. (D) Immunoblot for HMGCS2 and actin using protein lysates derived from the livers of adult mice treated with control or HMGCS2 ASO biweekly for 4 weeks beginning at 6 weeks of age. (E) Serum TKB concentrations (mM) during fasting in adult mice treated with ASOs for 4 weeks. n = 3–5/group. *P < 0.05, ***P < 0.001 by Student’s t test versus HMGCS2 ASO–treated mice, or as indicated.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts