Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Building a second brain in the bowel
Marina Avetisyan, … , Ellen Merrick Schill, Robert O. Heuckeroth
Marina Avetisyan, … , Ellen Merrick Schill, Robert O. Heuckeroth
Published February 9, 2015
Citation Information: J Clin Invest. 2015;125(3):899-907. https://doi.org/10.1172/JCI76307.
View: Text | PDF
Review Series

Building a second brain in the bowel

  • Text
  • PDF
Abstract

The enteric nervous system (ENS) is sometimes called the “second brain” because of the diversity of neuronal cell types and complex, integrated circuits that permit the ENS to autonomously regulate many processes in the bowel. Mechanisms supporting ENS development are intricate, with numerous proteins, small molecules, and nutrients that affect ENS morphogenesis and mature function. Damage to the ENS or developmental defects cause vomiting, abdominal pain, constipation, growth failure, and early death. Here, we review molecular mechanisms and cellular processes that govern ENS development, identify areas in which more investigation is needed, and discuss the clinical implications of new basic research.

Authors

Marina Avetisyan, Ellen Merrick Schill, Robert O. Heuckeroth

×

Figure 2

ENS development.

Options: View larger image (or click on image) Download as PowerPoint
ENS development.
(A) Murine vagal neural crest cells destined for the EN...
(A) Murine vagal neural crest cells destined for the ENS delaminate from the neural tube at E8.5. These ENCDCs are exposed to RA as they migrate by paraxial mesoderm on their way to the foregut at E9. (B) Once ENCDCs are in developing bowel, efficient caudal migration relies on vigorous ENCDC proliferation (top panel), as disorders that reduce ENCDC proliferation (bottom panel) commonly cause incomplete bowel colonization. (C) Efficient ENCDC migration is facilitated by contact between migrating cells. Chain migration of ENCDCs is quicker and more directed than migration of isolated ENCDCs. Disorders that alter ENCDC cell adhesion also delay bowel colonization and may cause HSCR. (D) After ENCDCs have populated the whole developing bowel (E13.5 in mice) in the region of the future myenteric plexus, a subset of ENCDCs migrates inward radially to form the submucosal plexus. Radial migration is regulated by the RET-GDNF signaling axis and by netrin/DCC chemoattraction. (E) nNOS-IR DG I neurons send caudal projections in the longitudinal axis, whereas CGRP-IR DG II neurons project circumferentially. Both DG I and DG II neurons are present at P0. However, only DGII neurons exhibit mature lamellar dendrites at this age, whereas most DG I dendrites are still filamentous. The proportion of DG I lamellar dendrites increases from P0 to P10. DG II projections do not grow in length from P0 to P10, whereas DG I projections do, though their growth rate does not match that of the bowel. There is significant maturation of the ENS after birth, at least in rodents.

Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts