Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Rapamycin improves TIE2-mutated venous malformation in murine model and human subjects
Elisa Boscolo, … , Joyce Bischoff, Laurence M. Boon
Elisa Boscolo, … , Joyce Bischoff, Laurence M. Boon
Published August 10, 2015
Citation Information: J Clin Invest. 2015;125(9):3491-3504. https://doi.org/10.1172/JCI76004.
View: Text | PDF
Research Article Genetics

Rapamycin improves TIE2-mutated venous malformation in murine model and human subjects

  • Text
  • PDF
Abstract

Venous malformations (VMs) are composed of ectatic veins with scarce smooth muscle cell coverage. Activating mutations in the endothelial cell tyrosine kinase receptor TIE2 are a common cause of these lesions. VMs cause deformity, pain, and local intravascular coagulopathy, and they expand with time. Targeted pharmacological therapies are not available for this condition. Here, we generated a model of VMs by injecting HUVECs expressing the most frequent VM-causing TIE2 mutation, TIE2-L914F, into immune-deficient mice. TIE2-L914F–expressing HUVECs formed VMs with ectatic blood-filled channels that enlarged over time. We tested both rapamycin and a TIE2 tyrosine kinase inhibitor (TIE2-TKI) for their effects on murine VM expansion and for their ability to inhibit mutant TIE2 signaling. Rapamycin prevented VM growth, while TIE2-TKI had no effect. In cultured TIE2-L914F–expressing HUVECs, rapamycin effectively reduced mutant TIE2-induced AKT signaling and, though TIE2-TKI did target the WT receptor, it only weakly suppressed mutant-induced AKT signaling. In a prospective clinical pilot study, we analyzed the effects of rapamycin in 6 patients with difficult–to-treat venous anomalies. Rapamycin reduced pain, bleeding, lesion size, functional and esthetic impairment, and intravascular coagulopathy. This study provides a VM model that allows evaluation of potential therapeutic strategies and demonstrates that rapamycin provides clinical improvement in patients with venous malformation.

Authors

Elisa Boscolo, Nisha Limaye, Lan Huang, Kyu-Tae Kang, Julie Soblet, Melanie Uebelhoer, Antonella Mendola, Marjut Natynki, Emmanuel Seront, Sophie Dupont, Jennifer Hammer, Catherine Legrand, Carlo Brugnara, Lauri Eklund, Miikka Vikkula, Joyce Bischoff, Laurence M. Boon

×

Figure 3

TIE2-TKI and rapamycin effects on murine VMs.

Options: View larger image (or click on image) Download as PowerPoint
TIE2-TKI and rapamycin effects on murine VMs.
(A) Pretreatment plus i.p....
(A) Pretreatment plus i.p. injection schematic. (B) Representative murine VM lesion explants at day 16. Top row: vehicle; middle row: TIE2-TKI; bottom row: rapamycin. Images taken from fixed distance. (C) HUVEC-TIE2-L914F lesional area measured by caliper every 2 days for 16 days. Data expressed as mean ± SEM, t test (n = 5 mice with 2 lesions/group). (D) Vascular volume at day 15 measured by analysis of color Doppler 3D image stacks. Data expressed as single values for each lesion (n = 5 mice with 2 lesions/group); medians shown by horizontal bars, Mann-Whitney U test. (E) Pretreatment schematic. (F) Representative murine VM lesion explants at day 16. Top row, DMSO; middle row, TIE2-TKI; bottom row, rapamycin. Images taken from fixed distance. (G) HUVEC-TIE2-L914F lesional area measured by caliper every 2 days for 16 days. Data expressed as mean ± SEM, t test (n = 5 mice with 2 lesions/group; shown is a representative experiment from 2 independent experiments). (H) Vascular volume at day 16 measured by analysis of color Doppler 3D image stacks. Data expressed as single values for each lesion; medians shown by horizontal bars, Mann-Whitney U test (n = 5 mice with 2 lesions/group; shown is a representative experiment from 2 independent experiments). (I) Representative images of VM sections immunostained for UEA-I (red), αSMA (green), and DAPI (blue). Arrows point to αSMA+ cells. Scale bar: 100 μM. (J) Quantification of luminal area occupied by UEA-I–stained blood vessels, expressed as percentage of total sectional area. Data expressed as mean ± SEM, t test (n = 5 fields/section, 7 mice analyzed/group). NS, P > 0.05. (K) Quantification of αSMA+ cells surrounding UEA-I–stained blood vessels. Data expressed as mean ± SEM (n = 5 fields/section, 7 mice analyzed/group). NS, P > 0.05.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts