Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Abnormal B cell memory subsets dominate HIV-specific responses in infected individuals
Lela Kardava, Susan Moir, Naisha Shah, Wei Wang, Richard Wilson, Clarisa M. Buckner, Brian H. Santich, Leo J.Y. Kim, Emily E. Spurlin, Amy K. Nelson, Adam K. Wheatley, Christopher J. Harvey, Adrian B. McDermott, Kai W. Wucherpfennig, Tae-Wook Chun, John S. Tsang, Yuxing Li, Anthony S. Fauci
Lela Kardava, Susan Moir, Naisha Shah, Wei Wang, Richard Wilson, Clarisa M. Buckner, Brian H. Santich, Leo J.Y. Kim, Emily E. Spurlin, Amy K. Nelson, Adam K. Wheatley, Christopher J. Harvey, Adrian B. McDermott, Kai W. Wucherpfennig, Tae-Wook Chun, John S. Tsang, Yuxing Li, Anthony S. Fauci
View: Text | PDF
Research Article AIDS/HIV

Abnormal B cell memory subsets dominate HIV-specific responses in infected individuals

  • Text
  • PDF
Abstract

Recently, several neutralizing anti-HIV antibodies have been isolated from memory B cells of HIV-infected individuals. Despite extensive evidence of B cell dysfunction in HIV disease, little is known about the cells from which these rare HIV-specific antibodies originate. Accordingly, we used HIV envelope gp140 and CD4 or coreceptor (CoR) binding site (bs) mutant probes to evaluate HIV-specific responses in peripheral blood B cells of HIV-infected individuals at various stages of infection. In contrast to non-HIV responses, HIV-specific responses against gp140 were enriched within abnormal B cells, namely activated and exhausted memory subsets, which are largely absent in the blood of uninfected individuals. Responses against the CoRbs, which is a poorly neutralizing epitope, arose early, whereas those against the well-characterized neutralizing epitope CD4bs were delayed and infrequent. Enrichment of the HIV-specific response within resting memory B cells, the predominant subset in uninfected individuals, did occur in certain infected individuals who maintained low levels of plasma viremia and immune activation with or without antiretroviral therapy. The distribution of HIV-specific responses among memory B cell subsets was corroborated by transcriptional analyses. Taken together, our findings provide valuable insight into virus-specific B cell responses in HIV infection and demonstrate that memory B cell abnormalities may contribute to the ineffectiveness of the antibody response in infected individuals.

Authors

Lela Kardava, Susan Moir, Naisha Shah, Wei Wang, Richard Wilson, Clarisa M. Buckner, Brian H. Santich, Leo J.Y. Kim, Emily E. Spurlin, Amy K. Nelson, Adam K. Wheatley, Christopher J. Harvey, Adrian B. McDermott, Kai W. Wucherpfennig, Tae-Wook Chun, John S. Tsang, Yuxing Li, Anthony S. Fauci

×

Figure 3

Frequencies of HIV-specific B cells by subset.

Options: View larger image (or click on image) Download as PowerPoint
Frequencies of HIV-specific B cells by subset.
(A) Mature (CD10–) B cell...
(A) Mature (CD10–) B cells isolated from the peripheral blood of a representative HIV-infected untreated individual and stained for CD20, IgG, CD21, CD27, and 3 gp140 probes. Gates were set on IgG+ B cells, followed by gating on B cells that were positive for gp140, gp140-CD4bs, and gp140-CoRbs and displaying the expression of the probe-gated B cells by the subset-identifying markers CD21 and CD27. (B) Pie chart analysis of gp140-binding B cells by subset for 42 HIV-viremic individuals and comparison of gp140-binding frequencies between subsets. (C) Similar analyses as in B, but for epitope specificities within gp140 (CD4bs and CoRbs); “other” refers to responses to gp140 after subtraction of those specific to CD4bs and CoRbs. Horizontal bars show mean values. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. The numbers in A refer to the percentage of cells in each quadrant or the percentage of cells within the gated population relative to the total number of cells shown in the dot plot. AM, activated memory; IM, intermediate memory; RM, resting memory; TLM, tissue-like memory.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts