Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Combined MEK and JAK inhibition abrogates murine myeloproliferative neoplasm
Guangyao Kong, Mark Wunderlich, David Yang, Erik A. Ranheim, Ken H. Young, Jinyong Wang, Yuan-I Chang, Juan Du, Yangang Liu, Sin Ruow Tey, Xinmin Zhang, Mark Juckett, Ryan Mattison, Alisa Damnernsawad, Jingfang Zhang, James C. Mulloy, Jing Zhang
Guangyao Kong, Mark Wunderlich, David Yang, Erik A. Ranheim, Ken H. Young, Jinyong Wang, Yuan-I Chang, Juan Du, Yangang Liu, Sin Ruow Tey, Xinmin Zhang, Mark Juckett, Ryan Mattison, Alisa Damnernsawad, Jingfang Zhang, James C. Mulloy, Jing Zhang
View: Text | PDF
Research Article Hematology

Combined MEK and JAK inhibition abrogates murine myeloproliferative neoplasm

  • Text
  • PDF
Abstract

Overactive RAS signaling is prevalent in juvenile myelomonocytic leukemia (JMML) and the myeloproliferative variant of chronic myelomonocytic leukemia (MP-CMML) in humans, and both are refractory to conventional chemotherapy. Conditional activation of a constitutively active oncogenic Nras (NrasG12D/G12D) in murine hematopoietic cells promotes an acute myeloproliferative neoplasm (MPN) that recapitulates many features of JMML and MP-CMML. We found that NrasG12D/G12D-expressing HSCs, which serve as JMML/MP-CMML–initiating cells, show strong hyperactivation of ERK1/2, promoting hyperproliferation and depletion of HSCs and expansion of downstream progenitors. Inhibition of the MEK pathway alone prolonged the presence of NrasG12D/G12D-expressing HSCs but failed to restore their proper function. Consequently, approximately 60% of NrasG12D/G12D mice treated with MEK inhibitor alone died within 20 weeks, and the remaining animals continued to display JMML/MP-CMML–like phenotypes. In contrast, combined inhibition of MEK and JAK/STAT signaling, which is commonly hyperactivated in human and mouse CMML, potently inhibited human and mouse CMML cell growth in vitro, rescued mutant NrasG12D/G12D-expressing HSC function in vivo, and promoted long-term survival without evident disease manifestation in NrasG12D/G12D animals. These results provide a strong rationale for further exploration of combined targeting of MEK/ERK and JAK/STAT in treating patients with JMML and MP-CMML.

Authors

Guangyao Kong, Mark Wunderlich, David Yang, Erik A. Ranheim, Ken H. Young, Jinyong Wang, Yuan-I Chang, Juan Du, Yangang Liu, Sin Ruow Tey, Xinmin Zhang, Mark Juckett, Ryan Mattison, Alisa Damnernsawad, Jingfang Zhang, James C. Mulloy, Jing Zhang

×

Figure 2

NrasG12D/G12D hyperactivates ERK1/2 in HSCs, and downregulation of MEK/ERK signaling rescues NrasG12D/G12D HSC exhaustion.

Options: View larger image (or click on image) Download as PowerPoint

NrasG12D/G12D hyperactivates ERK1/2 in HSCs, and downregulation of MEK/...
Control and NrasG12D/G12D mice were treated with pI-pC and sacrificed on day 12. (A and B) CD150+CD41– cells (enriched for HSCs) and CD150–CD41– cells (enriched for MPPs) were sorted from Sca1+-enriched total BM cells. Sorted cells were serum and cytokine starved for 30 minutes at 37°C (A). IL-3 stimulation was performed for 10 minutes at 37°C after starvation (B). Levels of pERK1/2 and pAKT were measured using phosphospecific flow cytometry. HSCs (defined as [Lin CD48]–/locKit+ cells from sorted CD150+CD41– cells) and MPPs (defined as [Lin CD48]–/locKit+ cells from sorted CD150–CD41– cells) were gated for data analysis. To quantify the activation of ERK1/2, median intensities of pERK1/2 at different IL-3 concentrations are shown relative to the respective control cells at 0 ng/ml (assigned as 1). (C) Quantification of c-Myc and cell senescence–related genes in control and NrasG12D/G12D HSCs using qRT-PCR. (D) Quantification of BM spleen HSCs from control and NrasG12D/G12D mice treated with vehicle or AZD6244 for 7 days. (E) Single NrasG12D/G12D HSC genotyping after AZD6244 treatment. Data are mean ± SD. *P < 0.05; **P < 0.01; ***P < 0.001.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts