Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
MicroRNA-7a regulates pancreatic β cell function
Mathieu Latreille, Jean Hausser, Ina Stützer, Quan Zhang, Benoit Hastoy, Sofia Gargani, Julie Kerr-Conte, Francois Pattou, Mihaela Zavolan, Jonathan L.S. Esguerra, Lena Eliasson, Thomas Rülicke, Patrik Rorsman, Markus Stoffel
Mathieu Latreille, Jean Hausser, Ina Stützer, Quan Zhang, Benoit Hastoy, Sofia Gargani, Julie Kerr-Conte, Francois Pattou, Mihaela Zavolan, Jonathan L.S. Esguerra, Lena Eliasson, Thomas Rülicke, Patrik Rorsman, Markus Stoffel
View: Text | PDF
Research Article Endocrinology

MicroRNA-7a regulates pancreatic β cell function

  • Text
  • PDF
Abstract

Dysfunctional microRNA (miRNA) networks contribute to inappropriate responses following pathological stress and are the underlying cause of several disease conditions. In pancreatic β cells, miRNAs have been largely unstudied and little is known about how specific miRNAs regulate glucose-stimulated insulin secretion (GSIS) or impact the adaptation of β cell function to metabolic stress. In this study, we determined that miR-7 is a negative regulator of GSIS in β cells. Using Mir7a2 deficient mice, we revealed that miR-7a2 regulates β cell function by directly regulating genes that control late stages of insulin granule fusion with the plasma membrane and ternary SNARE complex activity. Transgenic mice overexpressing miR-7a in β cells developed diabetes due to impaired insulin secretion and β cell dedifferentiation. Interestingly, perturbation of miR-7a expression in β cells did not affect proliferation and apoptosis, indicating that miR-7 is dispensable for the maintenance of endocrine β cell mass. Furthermore, we found that miR-7a levels are decreased in obese/diabetic mouse models and human islets from obese and moderately diabetic individuals with compensated β cell function. Our results reveal an interconnecting miR-7 genomic circuit that regulates insulin granule exocytosis in pancreatic β cells and support a role for miR-7 in the adaptation of pancreatic β cell function in obesity and type 2 diabetes.

Authors

Mathieu Latreille, Jean Hausser, Ina Stützer, Quan Zhang, Benoit Hastoy, Sofia Gargani, Julie Kerr-Conte, Francois Pattou, Mihaela Zavolan, Jonathan L.S. Esguerra, Lena Eliasson, Thomas Rülicke, Patrik Rorsman, Markus Stoffel

×

Figure 2

miR-7a controls exocytosis in primary pancreatic β cells.

Options: View larger image (or click on image) Download as PowerPoint
miR-7a controls exocytosis in primary pancreatic β cells.
(A and B) Calc...
(A and B) Calcium responses in (A) control (Ad-GFP) and miR-7a–overexpressing (Ad–miR-7a) and (B) control (LNA-C) and miR-7a–inhibited (LNA-7a) β cells under basal conditions and after addition of 20 mM glucose (20G) or 35 mM KCl (35K). Traces are representative of 40 (Ad-GFP), 22 (Ad–miR-7a), 14 (LNA-C), or 16 (LNA-7a) different cells from 3 different animals and expressed as ΔF/F0 (i.e., change relative to basal fluorescence [dashed horizontal lines]). (C and E) Exocytosis, monitored as increases in membrane capacitance, in (C) miR-7a–overexpressing and (E) miR-7a–inhibited β cells. Exocytosis was elicited by progressively longer (10–500 ms) depolarization from –70 to 0 mV (shown above traces). For clarity, only responses to 50-, 100-, and 200-ms depolarizations are shown. (D and F) Relationship between pulse duration and exocytosis (quantification of results in C and E, respectively). n = 14 (Ad–miR-7a2); 16 (Ad-GFP); 14–16 (LNA-7a and LNA-C). (G) As in F, but experiments were performed on human β cells (n = 18–20). (H and I) Docked granule density in (H) miR-7a–overexpressing and (I) miR-7a–inhibited cells. Data are from 15–23 cells obtained from 2 (H) or 3 (I) mice after a 15-minute incubation with 1 or 20 mM glucose. All data are mean ± SEM. *P < 0.05; **P < 0.01.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts