Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Ciliopathy proteins regulate paracrine signaling by modulating proteasomal degradation of mediators
Yangfan P. Liu, … , Brunella Franco, Nicholas Katsanis
Yangfan P. Liu, … , Brunella Franco, Nicholas Katsanis
Published April 1, 2014
Citation Information: J Clin Invest. 2014;124(5):2059-2070. https://doi.org/10.1172/JCI71898.
View: Text | PDF
Research Article Cell biology

Ciliopathy proteins regulate paracrine signaling by modulating proteasomal degradation of mediators

  • Text
  • PDF
Abstract

Cilia are critical mediators of paracrine signaling; however, it is unknown whether proteins that contribute to ciliopathies converge on multiple paracrine pathways through a common mechanism. Here, we show that loss of cilopathy-associated proteins Bardet-Biedl syndrome 4 (BBS4) or oral-facial-digital syndrome 1 (OFD1) results in the accumulation of signaling mediators normally targeted for proteasomal degradation. In WT cells, several BBS proteins and OFD1 interacted with proteasomal subunits, and loss of either BBS4 or OFD1 led to depletion of multiple subunits from the centrosomal proteasome. Furthermore, overexpression of proteasomal regulatory components or treatment with proteasomal activators sulforaphane (SFN) and mevalonolactone (MVA) ameliorated signaling defects in cells lacking BBS1, BBS4, and OFD1, in morphant zebrafish embryos, and in induced neurons from Ofd1-deficient mice. Finally, we tested the hypothesis that other proteasome-dependent pathways not known to be associated with ciliopathies are defective in the absence of ciliopathy proteins. We found that loss of BBS1, BBS4, or OFD1 led to decreased NF-κB activity and concomitant IκBβ accumulation and that these defects were ameliorated with SFN treatment. Taken together, our data indicate that basal body proteasomal regulation governs paracrine signaling pathways and suggest that augmenting proteasomal function might benefit ciliopathy patients.

Authors

Yangfan P. Liu, I-Chun Tsai, Manuela Morleo, Edwin C. Oh, Carmen C. Leitch, Filomena Massa, Byung-Hoon Lee, David S. Parker, Daniel Finley, Norann A. Zaghloul, Brunella Franco, Nicholas Katsanis

×

Figure 5

Activation of proteasome ameliorates signaling defects in bbs and ofd1 morphant zebrafish embryos.

Options: View larger image (or click on image) Download as PowerPoint
Activation of proteasome ameliorates signaling defects in bbs and ofd1 m...
(A) Coinjection of human RPN10, RPN13, and RPT6 mRNA into bbs4 and ofd1 morphant zebrafish embryos rescued somitic and CE defects at the 9 ± 1 ss and ectopic expression of her4 in the eye (arrowheads in lower row) at 4.5 dpf. CE defects were scored based on the body gap angle (arrowheads in upper row). Expression of her4 was detected by whole-mount RNA in situ hybridization. (B, C, and D) Coinjection of SFN rescued somitic and CE defects as well as ectopic her4 expression in bbs4 (B), bbs1 (C), and ofd1 (D) morphant zebrafish embryos, while injection of SFN alone did not give rise to any obvious phenotype (B). As shown in the top row (dorsal view), the somites (bars) were longer in bbs4 (B), bbs1 (C), and ofd1 (D) morphants and were shortened in morphant zebrafish embryos coinjected with SFN. In the second row (lateral view), the body gap angle (arrowheads) was greater in morphants and reduced in the presence of SFN. Dashed boxes delimit the enlarged images in the third row, showing the effects of SFN treatment on somite boundary definition defects. Percentage of embryos with somite boundary definition and CE defects and sample size (n) are noted below the images of each condition. Scale bars: 100 μm.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts