Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Human C3 glomerulopathy provides unique insights into complement factor H–related protein function
V. Michael Holers
V. Michael Holers
Published May 24, 2013
Citation Information: J Clin Invest. 2013;123(6):2357-2360. https://doi.org/10.1172/JCI69684.
View: Text | PDF
Commentary

Human C3 glomerulopathy provides unique insights into complement factor H–related protein function

  • Text
  • PDF
Abstract

The study in this issue of the JCI by Tortajada et al. demonstrates that a duplication within the gene complement factor H–related 1 (CFHR1; encoding FHR1) leads to the production of an aberrant larger form of the protein. Elegant in vitro studies of the mutant and normal variants demonstrate an unexpected mechanism of action of FHR1, wherein homodimeration and hetero-oligomerization with FHR2 and FHR5 generates more avid molecules that very effectively compete with FH binding to surfaces and impair its ability to regulate local complement activation. As variants of FHRs are linked to many human inflammatory and autoimmune diseases, these and other recently published structure/function studies of these proteins provide key insights into their complement regulatory activities and likely roles in disease.

Authors

V. Michael Holers

×

Full Text PDF | Download (1.14 MB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts