Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Issue published June 3, 2013 Previous issue | Next issue

  • Volume 123, Issue 6
Go to section:
  • Science in Medicine
  • Conversations with Giants in Medicine
  • Hindsight
  • The Attending Physician
  • Commentaries
  • Research Articles
  • Retraction

On the cover: Lamin B1 regulates myelin maintenance

Adult-onset autosomal-dominant leukodystrophy (ADLD) is a rare neurological disorder characterized by a progressive loss of myelin in the central nervous system. In this month’s JCI, Heng et al. investigated the mechanisms by which increased lamin B1 (Lmnb1) expression contributes to neurological defects using newly generated mouse models of ADLD (page 2719). Their study demonstrates that increased Lmnb1 contributes to cognitive impairments and epilepsy and uncovers cell-autonomous functions for lamin B1 in myelin formation and maintenance. Here, a representative electron micrograph from a 1-year-old mouse carrying the Lmnb1 transgene reveals structure abnormalities in myelin sheaths.
Science in Medicine
Iron regulation by hepcidin
Ningning Zhao, … , An-Sheng Zhang, Caroline A. Enns
Ningning Zhao, … , An-Sheng Zhang, Caroline A. Enns
Published June 3, 2013
Citation Information: J Clin Invest. 2013;123(6):2337-2343. https://doi.org/10.1172/JCI67225.
View: Text | PDF

Iron regulation by hepcidin

  • Text
  • PDF
Abstract

Hepcidin is a key hormone that is involved in the control of iron homeostasis in the body. Physiologically, hepcidin is controlled by iron stores, inflammation, hypoxia, and erythropoiesis. The regulation of hepcidin expression by iron is a complex process that requires the coordination of multiple proteins, including hemojuvelin, bone morphogenetic protein 6 (BMP6), hereditary hemochromatosis protein, transferrin receptor 2, matriptase-2, neogenin, BMP receptors, and transferrin. Misregulation of hepcidin is found in many disease states, such as the anemia of chronic disease, iron refractory iron deficiency anemia, cancer, hereditary hemochromatosis, and ineffective erythropoiesis, such as β-thalassemia. Thus, the regulation of hepcidin is the subject of interest for the amelioration of the detrimental effects of either iron deficiency or overload.

Authors

Ningning Zhao, An-Sheng Zhang, Caroline A. Enns

×
Conversations with Giants in Medicine
A conversation with Stephen O’Rahilly
Ushma S. Neill
Ushma S. Neill
Published June 3, 2013
Citation Information: J Clin Invest. 2013;123(6):2335-2336. https://doi.org/10.1172/JCI70726.
View: Text | PDF

A conversation with Stephen O’Rahilly

  • Text
  • PDF
Abstract

Authors

Ushma S. Neill

×
Hindsight
Leptin and the brain: then and now
Michael W. Schwartz, Denis G. Baskin
Michael W. Schwartz, Denis G. Baskin
Published June 3, 2013
Citation Information: J Clin Invest. 2013;123(6):2344-2345. https://doi.org/10.1172/JCI69346.
View: Text | PDF

Leptin and the brain: then and now

  • Text
  • PDF
Abstract

The discovery of the adipocyte hormone leptin and the demonstration that severe obesity in ob/ob and db/db mice results from mutation of genes encoding leptin and its receptor, respectively, ushered in a new era of obesity research. Our investigation into mechanisms mediating CNS actions of insulin led us to ask whether the two hormones act on a common set of hypothalamic targets. Our finding that this is indeed the case prompted studies that continue to this day. While substantial progress has been made in understanding brain mechanisms of leptin action, translating this knowledge into more effective treatment of obesity remains an elusive goal.

Authors

Michael W. Schwartz, Denis G. Baskin

×
The Attending Physician
Unraveling how Giardia infections cause disease
Theodore E. Nash
Theodore E. Nash
Published May 24, 2013
Citation Information: J Clin Invest. 2013;123(6):2346-2347. https://doi.org/10.1172/JCI69956.
View: Text | PDF

Unraveling how Giardia infections cause disease

  • Text
  • PDF
Abstract

A 40-year-old NIH male scientist camped and fished in a remote lake in Alaska. On his return, he developed diarrhea, cramps, and loose stools without blood or mucus in the absence of fever and was diagnosed with giardiasis. A 3-year-old female living in the Florida Keys complained of intermittent stomachaches over a 2-month period. Her stools were variably loose. The patient was diagnosed with giardiasis, which led to examination of her mother, father, and brother, who were mildly symptomatic; all 3 were subsequently diagnosed with giardiasis. The child’s only exposure was from swimming in a local community pool. A 40-year-old male from Mexico, who resided in Virginia and worked as a cook in a fast food restaurant, was diagnosed with giardiasis. He denied any symptoms and was not allowed to prepare food. Treatment with metronidazole, nitazoxanide, and albendazole failed to eradicate the infection. He was successfully treated with the combination of paromomycin and metronidazole.

Authors

Theodore E. Nash

×

Anger management: bacteria soothe the savage host
Patrick C. Seed
Patrick C. Seed
Published May 24, 2013
Citation Information: J Clin Invest. 2013;123(6):2348-2349. https://doi.org/10.1172/JCI69647.
View: Text | PDF

Anger management: bacteria soothe the savage host

  • Text
  • PDF
Abstract

A 5-year-old girl has come to you a week after completing a course of antibiotics for a febrile urinary tract infection (UTI). She now seems well and energetic. A urinalysis is now clear without traces of inflammation, including an absence of protein, blood, leukocyte esterase, and nitrites. Her urine is submitted for a test of cure and comes back positive, with over 100,000 colonies per milliliter of E. coli, the same kind of bacteria that was cultured from her urine when she was symptomatic with the UTI. Perplexed, her mother asks how her child can have bacteria once again in her bladder but not be symptomatic and asks if antibiotics are again necessary.

Authors

Patrick C. Seed

×
Commentaries
RNA-guided diagnostics and therapeutics for next-generation individualized nanomedicine
Gennadi V. Glinsky
Gennadi V. Glinsky
Published May 24, 2013
Citation Information: J Clin Invest. 2013;123(6):2350-2352. https://doi.org/10.1172/JCI69268.
View: Text | PDF

RNA-guided diagnostics and therapeutics for next-generation individualized nanomedicine

  • Text
  • PDF
Abstract

The absence of reliable quantitative laboratory tests for measurements of microRNAs and other classes of small noncoding RNAs in archived, formalin-fixed, paraffin-embedded human samples with sufficient specificity and sensitivity has significantly limited the development of clinically relevant noncoding RNA–based diagnostic and therapeutic applications. A report by Renwick et al. in this issue of the JCI presents a significant technical and methodological advance toward the development of reliable clinical laboratory-compatible multicolor RNA FISH methodology for molecular diagnostic applications and the near-term prospect of introduction of microRNA-based biomarkers into clinical practice. Further, this work is likely to advance the development of RNA-based therapeutics and next-generation individualized nanomedicine.

Authors

Gennadi V. Glinsky

×

Giardia: both a harmless commensal and a devastating pathogen
Herbert L. DuPont
Herbert L. DuPont
Published May 24, 2013
Citation Information: J Clin Invest. 2013;123(6):2352-2354. https://doi.org/10.1172/JCI69932.
View: Text | PDF

Giardia: both a harmless commensal and a devastating pathogen

  • Text
  • PDF
Abstract

The highly prevalent protozoan Giardia lamblia is an enteropathogen that can be asymptomatic in some individuals, while leading to persistent diarrhea and substantial morbidity in others. In this issue of the JCI, Bartelt et al. describe a mouse model of the disease and investigate the contribution of coincident malnutrition with the development of symptomatic infection. This work in part explains how Giardia infection can lead to growth retardation, and may offer insights that guide future therapeutic strategies.

Authors

Herbert L. DuPont

×

Targeting immunosuppression for cancer therapy
Cristina Ghirelli, Thorsten Hagemann
Cristina Ghirelli, Thorsten Hagemann
Published May 24, 2013
Citation Information: J Clin Invest. 2013;123(6):2355-2357. https://doi.org/10.1172/JCI69999.
View: Text | PDF

Targeting immunosuppression for cancer therapy

  • Text
  • PDF
Abstract

Failing immunity has been acknowledged for its contribution to cancer development and progression. Recent clinical findings have provided payoffs for significant preclinical evaluation and refinement over the last 20 years, but many questions remain to be answered. In this issue of the JCI, Marabelle et al. describe a novel method for targeting the Tregs that infiltrate tumors, demonstrating that dampening the tumor immunosuppressive environment while activating innate antitumor immunity may be an effective approach to cancer treatment.

Authors

Cristina Ghirelli, Thorsten Hagemann

×

Human C3 glomerulopathy provides unique insights into complement factor H–related protein function
V. Michael Holers
V. Michael Holers
Published May 24, 2013
Citation Information: J Clin Invest. 2013;123(6):2357-2360. https://doi.org/10.1172/JCI69684.
View: Text | PDF

Human C3 glomerulopathy provides unique insights into complement factor H–related protein function

  • Text
  • PDF
Abstract

The study in this issue of the JCI by Tortajada et al. demonstrates that a duplication within the gene complement factor H–related 1 (CFHR1; encoding FHR1) leads to the production of an aberrant larger form of the protein. Elegant in vitro studies of the mutant and normal variants demonstrate an unexpected mechanism of action of FHR1, wherein homodimeration and hetero-oligomerization with FHR2 and FHR5 generates more avid molecules that very effectively compete with FH binding to surfaces and impair its ability to regulate local complement activation. As variants of FHRs are linked to many human inflammatory and autoimmune diseases, these and other recently published structure/function studies of these proteins provide key insights into their complement regulatory activities and likely roles in disease.

Authors

V. Michael Holers

×

Transplant rejection and paradigms lost
Terry B. Strom
Terry B. Strom
Published May 15, 2013
Citation Information: J Clin Invest. 2013;123(6):2360-2362. https://doi.org/10.1172/JCI69385.
View: Text | PDF

Transplant rejection and paradigms lost

  • Text
  • PDF
Abstract

During transplant rejection, migrating T cells infiltrate the grafted organ, but the signals that direct this migration are incompletely understood. In this issue of the JCI, Walch et al. debunk two classical paradigms concerning transplant rejection, with important consequences for the design of antirejection therapeutics.

Authors

Terry B. Strom

×

Blazing a new TRAIL in hematopoietic cell transplantation
Nelson Chao
Nelson Chao
Published May 15, 2013
Citation Information: J Clin Invest. 2013;123(6):2362-2363. https://doi.org/10.1172/JCI69909.
View: Text | PDF

Blazing a new TRAIL in hematopoietic cell transplantation

  • Text
  • PDF
Abstract

There is a ying/yang to most biological therapies, and the balance of efficacy versus toxicity is delicate and sometimes difficult to achieve in favor of the patients. When the therapeutic window is wide, these therapies can be used in the majority of patients, but when the therapeutic window is narrow, the decision to proceed must be carefully balanced with a thoughtful risk-benefit analysis. In this issue of the JCI, Ghosh et al. tackle one of the major obstacles in hematopoietic cell transplantation (HCT) technology: balancing the beneficial antitumor effect with the harmful anti-host effect.

Authors

Nelson Chao

×

A new approach to disease-modifying drug trials in Parkinson’s disease
Roger A. Barker, … , Mark Stacy, Patrik Brundin
Roger A. Barker, … , Mark Stacy, Patrik Brundin
Published May 20, 2013
Citation Information: J Clin Invest. 2013;123(6):2364-2365. https://doi.org/10.1172/JCI69690.
View: Text | PDF

A new approach to disease-modifying drug trials in Parkinson’s disease

  • Text
  • PDF
Abstract

Translating new findings in the laboratory into therapies for patients is a slow and expensive process. The development of therapies for neurodegenerative diseases is further complicated by the difficulty in determining whether the drug truly retards the slow degenerative process or provides only symptomatic benefit. In this issue, Aviles-Olmos et al. describe a first in Parkinson’s disease (PD) patient study using a drug previously approved for diabetes treatment. In addition to suggesting that the drug may indeed be disease modifying in PD, their innovative approach suggests there may be more rapid and inexpensive avenues for testing novel therapies in PD.

Authors

Roger A. Barker, Mark Stacy, Patrik Brundin

×
Research Articles
Bacterial control of host gene expression through RNA polymerase II
Nataliya Lutay, … , Björn Wullt, Catharina Svanborg
Nataliya Lutay, … , Björn Wullt, Catharina Svanborg
Published May 24, 2013
Citation Information: J Clin Invest. 2013;123(6):2366-2379. https://doi.org/10.1172/JCI66451.
View: Text | PDF

Bacterial control of host gene expression through RNA polymerase II

  • Text
  • PDF
Abstract

The normal flora furnishes the host with ecological barriers that prevent pathogen attack while maintaining tissue homeostasis. Urinary tract infections (UTIs) constitute a highly relevant model of microbial adaptation in which some patients infected with Escherichia coli develop acute pyelonephritis, while other patients with bacteriuria exhibit an asymptomatic carrier state similar to bacterial commensalism. It remains unclear if the lack of destructive inflammation merely reflects low virulence or if carrier strains actively inhibit disease-associated responses in the host. Here, we identify a new mechanism of bacterial adaptation through broad suppression of RNA polymerase II–dependent (Pol II–dependent) host gene expression. Over 60% of all genes were suppressed 24 hours after human inoculation with the prototype asymptomatic bacteriuria (ABU) strain E. coli 83972, and inhibition was verified by infection of human cells. Specific repressors and activators of Pol II–dependent transcription were modified, Pol II phosphorylation was inhibited, and pathogen-specific signaling was suppressed in cell lines and inoculated patients. An increased frequency of strains inhibiting Pol II was epidemiologically verified in ABU and fecal strains compared with acute pyelonephritis, and a Pol II antagonist suppressed the disease-associated host response. These results suggest that by manipulating host gene expression, ABU strains promote tissue integrity while inhibiting pathology. Such bacterial modulation of host gene expression may be essential to sustain asymptomatic bacterial carriage by ensuring that potentially destructive immune activation will not occur.

Authors

Nataliya Lutay, Ines Ambite, Jenny Grönberg Hernandez, Gustav Rydström, Bryndís Ragnarsdóttir, Manoj Puthia, Aftab Nadeem, Jingyao Zhang, Petter Storm, Ulrich Dobrindt, Björn Wullt, Catharina Svanborg

×

Smoothened is a master regulator of adult liver repair
Gregory A. Michelotti, … , Daniel Metzger, Anna Mae Diehl
Gregory A. Michelotti, … , Daniel Metzger, Anna Mae Diehl
Published April 8, 2013
Citation Information: J Clin Invest. 2013;123(6):2380-2394. https://doi.org/10.1172/JCI66904.
View: Text | PDF

Smoothened is a master regulator of adult liver repair

  • Text
  • PDF
Abstract

When regenerative processes cannot keep pace with cell death, functional epithelia are replaced by scar. Scarring is characterized by both excessive accumulation of fibrous matrix and persistent outgrowth of cell types that accumulate transiently during successful wound healing, including myofibroblasts (MFs) and progenitors. This suggests that signaling that normally directs these cells to repair injured epithelia is deregulated. To evaluate this possibility, we examined liver repair during different types of liver injury after Smoothened (SMO), an obligate intermediate in the Hedgehog (Hh) signaling pathway, was conditionally deleted in cells expressing the MF-associated gene, αSMA. Surprisingly, blocking canonical Hh signaling in MFs not only inhibited liver fibrosis but also prevented accumulation of liver progenitors. Hh-sensitive, hepatic stellate cells (HSCs) were identified as the source of both MFs and progenitors by lineage-tracing studies in 3 other strains of mice, coupled with analysis of highly pure HSC preparations using flow cytometry, immunofluorescence confocal microscopy, RT-PCR, and in situ hybridization. The results identify SMO as a master regulator of hepatic epithelial regeneration based on its ability to promote mesenchymal-to-epithelial transitions in a subpopulation of HSC-derived MFs with features of multipotent progenitors.

Authors

Gregory A. Michelotti, Guanhua Xie, Marzena Swiderska, Steve S. Choi, Gamze Karaca, Leandi Krüger, Richard Premont, Liu Yang, Wing-Kin Syn, Daniel Metzger, Anna Mae Diehl

×

CXCR4 downregulation of let-7a drives chemoresistance in acute myeloid leukemia
Ye Chen, … , Carlo Croce, Michael Andreeff
Ye Chen, … , Carlo Croce, Michael Andreeff
Published May 8, 2013
Citation Information: J Clin Invest. 2013;123(6):2395-2407. https://doi.org/10.1172/JCI66553.
View: Text | PDF

CXCR4 downregulation of let-7a drives chemoresistance in acute myeloid leukemia

  • Text
  • PDF
Abstract

We examined the role of microRNAs (miRNAs) in targeting the stromal-derived factor 1α/CXCR4 (SDF-1α/CXCR4) axis to overcome chemoresistance of AML cells. Microarray analysis of OCI-AML3 cells revealed that the miRNA let-7a was downregulated by SDF-1α–mediated CXCR4 activation and increased by CXCR4 inhibition. Overexpression of let-7a in AML cell lines was associated with decreased c-Myc and BCL-XL protein expression and enhanced chemosensitivity, both in vitro and in vivo. We identified the transcription factor Yin Yang 1 (YY1) as a link between SDF-1α/CXCR4 signaling and let-7a, as YY1 was upregulated by SDF-1α and downregulated by treatment with a CXCR4 antagonist. ChIP assay confirmed the binding of YY1 to unprocessed let-7a DNA fragments, and treatment with YY1 shRNA increased let-7a expression. In primary human AML samples, high CXCR4 expression was associated with low let-7a levels. Xenografts of primary human AML cells engineered to overexpress let-7a exhibited enhanced sensitivity to cytarabine, resulting in greatly extended survival of immunodeficient mice. Based on these data, we propose that CXCR4 induces chemoresistance by downregulating let-7a to promote YY1-mediated transcriptional activation of MYC and BCLXL in AML cells.

Authors

Ye Chen, Rodrigo Jacamo, Marina Konopleva, Ramiro Garzon, Carlo Croce, Michael Andreeff

×

Fetal-derived adrenomedullin mediates the innate immune milieu of the placenta
Manyu Li, … , Christopher P. Mack, Kathleen M. Caron
Manyu Li, … , Christopher P. Mack, Kathleen M. Caron
Published May 1, 2013
Citation Information: J Clin Invest. 2013;123(6):2408-2420. https://doi.org/10.1172/JCI67039.
View: Text | PDF

Fetal-derived adrenomedullin mediates the innate immune milieu of the placenta

  • Text
  • PDF
Abstract

The remodeling of maternal uterine spiral arteries (SAs) is an essential process for ensuring low-resistance, high-capacitance blood flow to the growing fetus. Failure of SAs to remodel is causally associated with preeclampsia, a common and life-threatening complication of pregnancy that is harmful to both mother and fetus. Here, using both loss-of-function and gain-of-function genetic mouse models, we show that expression of the pregnancy-related peptide adrenomedullin (AM) by fetal trophoblast cells is necessary and sufficient to promote appropriate recruitment and activation of maternal uterine NK (uNK) cells to the placenta and ultimately facilitate remodeling of maternal SAs. Placentas that lacked either AM or its receptor exhibited reduced fetal vessel branching in the labyrinth, failed SA remodeling and reendothelialization, and markedly reduced numbers of maternal uNK cells. In contrast, overexpression of AM caused a reversal of these phenotypes with a concomitant increase in uNK cell content in vivo. Moreover, AM dose-dependently stimulated the secretion of numerous chemokines, cytokines, and MMPs from uNK cells, which in turn induced VSMC apoptosis. These data identify an essential function for fetal-derived factors in the maternal vascular adaptation to pregnancy and underscore the importance of exploring AM as a biomarker and therapeutic agent for preeclampsia.

Authors

Manyu Li, Nicole M.J. Schwerbrock, Patricia M. Lenhart, Kimberly L. Fritz-Six, Mahita Kadmiel, Kathleen S. Christine, Daniel M. Kraus, Scott T. Espenschied, Helen H. Willcockson, Christopher P. Mack, Kathleen M. Caron

×

Osteocalcin regulates murine and human fertility through a pancreas-bone-testis axis
Franck Oury, … , Ingrid Plotton, Gerard Karsenty
Franck Oury, … , Ingrid Plotton, Gerard Karsenty
Published May 24, 2013
Citation Information: J Clin Invest. 2013;123(6):2421-2433. https://doi.org/10.1172/JCI65952.
View: Text | PDF | Corrigendum | Erratum

Osteocalcin regulates murine and human fertility through a pancreas-bone-testis axis

  • Text
  • PDF
Abstract

The osteoblast-derived hormone osteocalcin promotes testosterone biosynthesis in the mouse testis by binding to GPRC6A in Leydig cells. Interestingly, Osteocalcin-deficient mice exhibit increased levels of luteinizing hormone (LH), a pituitary hormone that regulates sex steroid synthesis in the testes. These observations raise the question of whether LH regulates osteocalcin’s reproductive effects. Additionally, there is growing evidence that osteocalcin levels are a reliable marker of insulin secretion and sensitivity and circulating levels of testosterone in humans, but the endocrine function of osteocalcin is unclear. Using mouse models, we found that osteocalcin and LH act in 2 parallel pathways and that osteocalcin-stimulated testosterone synthesis is positively regulated by bone resorption and insulin signaling in osteoblasts. To determine the importance of osteocalcin in humans, we analyzed a cohort of patients with primary testicular failure and identified 2 individuals harboring the same heterozygous missense variant in one of the transmembrane domains of GPRC6A, which prevented the receptor from localizing to the cell membrane. This study uncovers the existence of a second endocrine axis that is necessary for optimal male fertility in the mouse and suggests that osteocalcin modulates reproductive function in humans.

Authors

Franck Oury, Mathieu Ferron, Wang Huizhen, Cyrille Confavreux, Lin Xu, Julie Lacombe, Prashanth Srinivas, Alexandre Chamouni, Francesca Lugani, Herve Lejeune, T. Rajendra Kumar, Ingrid Plotton, Gerard Karsenty

×

C3 glomerulopathy–associated CFHR1 mutation alters FHR oligomerization and complement regulation
Agustín Tortajada, … , Oscar Llorca, Santiago Rodríguez de Córdoba
Agustín Tortajada, … , Oscar Llorca, Santiago Rodríguez de Córdoba
Published May 24, 2013
Citation Information: J Clin Invest. 2013;123(6):2434-2446. https://doi.org/10.1172/JCI68280.
View: Text | PDF

C3 glomerulopathy–associated CFHR1 mutation alters FHR oligomerization and complement regulation

  • Text
  • PDF
Abstract

C3 glomerulopathies (C3G) are a group of severe renal diseases with distinct patterns of glomerular inflammation and C3 deposition caused by complement dysregulation. Here we report the identification of a familial C3G-associated genomic mutation in the gene complement factor H–related 1 (CFHR1), which encodes FHR1. The mutation resulted in the duplication of the N-terminal short consensus repeats (SCRs) that are conserved in FHR2 and FHR5. We determined that native FHR1, FHR2, and FHR5 circulate in plasma as homo- and hetero-oligomeric complexes, the formation of which is likely mediated by the conserved N-terminal domain. In mutant FHR1, duplication of the N-terminal domain resulted in the formation of unusually large multimeric FHR complexes that exhibited increased avidity for the FHR1 ligands C3b, iC3b, and C3dg and enhanced competition with complement factor H (FH) in surface plasmon resonance (SPR) studies and hemolytic assays. These data revealed that FHR1, FHR2, and FHR5 organize a combinatorial repertoire of oligomeric complexes and demonstrated that changes in FHR oligomerization influence the regulation of complement activation. In summary, our identification and characterization of a unique CFHR1 mutation provides insights into the biology of the FHRs and contributes to our understanding of the pathogenic mechanisms underlying C3G.

Authors

Agustín Tortajada, Hugo Yébenes, Cynthia Abarrategui-Garrido, Jaouad Anter, Jesús M. García-Fernández, Rubén Martínez-Barricarte, María Alba-Domínguez, Talat H. Malik, Rafael Bedoya, Rocío Cabrera Pérez, Margarita López Trascasa, Matthew C. Pickering, Claire L. Harris, Pilar Sánchez-Corral, Oscar Llorca, Santiago Rodríguez de Córdoba

×

Depleting tumor-specific Tregs at a single site eradicates disseminated tumors
Aurélien Marabelle, … , Victor Tse, Ronald Levy
Aurélien Marabelle, … , Victor Tse, Ronald Levy
Published May 24, 2013
Citation Information: J Clin Invest. 2013;123(6):2447-2463. https://doi.org/10.1172/JCI64859.
View: Text | PDF | Erratum

Depleting tumor-specific Tregs at a single site eradicates disseminated tumors

  • Text
  • PDF
Abstract

Activation of TLR9 by direct injection of unmethylated CpG nucleotides into a tumor can induce a therapeutic immune response; however, Tregs eventually inhibit the antitumor immune response and thereby limit the power of cancer immunotherapies. In tumor-bearing mice, we found that Tregs within the tumor preferentially express the cell surface markers CTLA-4 and OX40. We show that intratumoral coinjection of anti–CTLA-4 and anti-OX40 together with CpG depleted tumor-infiltrating Tregs. This in situ immunomodulation, which was performed with low doses of antibodies in a single tumor, generated a systemic antitumor immune response that eradicated disseminated disease in mice. Further, this treatment modality was effective against established CNS lymphoma with leptomeningeal metastases, sites that are usually considered to be tumor cell sanctuaries in the context of conventional systemic therapy. These results demonstrate that antitumor immune effectors elicited by local immunomodulation can eradicate tumor cells at distant sites. We propose that, rather than using mAbs to target cancer cells systemically, mAbs could be used to target the tumor infiltrative immune cells locally, thereby eliciting a systemic immune response.

Authors

Aurélien Marabelle, Holbrook Kohrt, Idit Sagiv-Barfi, Bahareh Ajami, Robert C. Axtell, Gang Zhou, Ranjani Rajapaksa, Michael R. Green, James Torchia, Joshua Brody, Richard Luong, Michael D. Rosenblum, Lawrence Steinman, Hyam I. Levitsky, Victor Tse, Ronald Levy

×

Plasmacytoid dendritic cells promote rotavirus-induced human and murine B cell responses
Emily M. Deal, … , Eugene C. Butcher, Harry B. Greenberg
Emily M. Deal, … , Eugene C. Butcher, Harry B. Greenberg
Published May 1, 2013
Citation Information: J Clin Invest. 2013;123(6):2464-2474. https://doi.org/10.1172/JCI60945.
View: Text | PDF

Plasmacytoid dendritic cells promote rotavirus-induced human and murine B cell responses

  • Text
  • PDF
Abstract

B cell–dependent immunity to rotavirus, an important intestinal pathogen, plays a significant role in viral clearance and protects against reinfection. Human in vitro and murine in vivo models of rotavirus infection were used to delineate the role of primary plasmacytoid DCs (pDCs) in initiating B cell responses. Human pDCs were necessary and sufficient for B cell activation induced by rotavirus. Type I IFN recognition by B cells was essential for rotavirus-mediated B cell activation in vitro and murine pDCs and IFN-α/β–mediated B cell activation after in vivo intestinal rotavirus infection. Furthermore, rotavirus-specific serum and mucosal antibody responses were defective in mice lacking functional pDCs at the time of infection. These data demonstrate that optimal B cell activation and virus-specific antibody secretion following mucosal infection were a direct result of pDC-derived type I IFN. Importantly, viral shedding significantly increased in pDC-deficient mice, suggesting that pDC-dependent antibody production influences viral clearance. Thus, mucosal pDCs critically influence the course of rotavirus infection through rotavirus recognition and subsequent IFN production and display powerful adjuvant properties to initiate and enhance humoral immunity.

Authors

Emily M. Deal, Katharina Lahl, Carlos F. Narváez, Eugene C. Butcher, Harry B. Greenberg

×

Inhibition of DYRK1A destabilizes EGFR and reduces EGFR-dependent glioblastoma growth
Natividad Pozo, … , Juan M. Sepúlveda, Pilar Sánchez-Gómez
Natividad Pozo, … , Juan M. Sepúlveda, Pilar Sánchez-Gómez
Published May 1, 2013
Citation Information: J Clin Invest. 2013;123(6):2475-2487. https://doi.org/10.1172/JCI63623.
View: Text | PDF

Inhibition of DYRK1A destabilizes EGFR and reduces EGFR-dependent glioblastoma growth

  • Text
  • PDF
Abstract

Glioblastomas (GBMs) are very aggressive tumors that are resistant to conventional chemo- and radiotherapy. New molecular therapeutic strategies are required to effectively eliminate the subpopulation of GBM tumor–initiating cells that are responsible for relapse. Since EGFR is altered in 50% of GBMs, it represents one of the most promising targets; however, EGFR kinase inhibitors have produced poor results in clinical assays, with no clear explanation for the observed resistance. We uncovered a fundamental role for the dual-specificity tyrosine phosphorylation–regulated kinase, DYRK1A, in regulating EGFR in GBMs. We found that DYRK1A was highly expressed in these tumors and that its expression was correlated with that of EGFR. Moreover, DYRK1A inhibition promoted EGFR degradation in primary GBM cell lines and neural progenitor cells, sharply reducing the self-renewal capacity of normal and tumorigenic cells. Most importantly, our data suggest that a subset of GBMs depends on high surface EGFR levels, as DYRK1A inhibition compromised their survival and produced a profound decrease in tumor burden. We propose that the recovery of EGFR stability is a key oncogenic event in a large proportion of gliomas and that pharmacological inhibition of DYRK1A could represent a promising therapeutic intervention for EGFR-dependent GBMs.

Authors

Natividad Pozo, Cristina Zahonero, Paloma Fernández, Jose M. Liñares, Angel Ayuso, Masatoshi Hagiwara, Angel Pérez, Jose R. Ricoy, Aurelio Hernández-Laín, Juan M. Sepúlveda, Pilar Sánchez-Gómez

×

HPV-related methylation signature predicts survival in oropharyngeal squamous cell carcinomas
Efterpi Kostareli, … , Dieter Weichenhan, Jochen Hess
Efterpi Kostareli, … , Dieter Weichenhan, Jochen Hess
Published May 1, 2013
Citation Information: J Clin Invest. 2013;123(6):2488-2501. https://doi.org/10.1172/JCI67010.
View: Text | PDF

HPV-related methylation signature predicts survival in oropharyngeal squamous cell carcinomas

  • Text
  • PDF
Abstract

High-risk types of human papilloma virus (HPV) are increasingly associated with oropharyngeal squamous cell carcinoma (OPSCC). Strikingly, patients with HPV-positive OPSCC are highly curable with ionizing radiation and have better survival compared with HPV-negative patients, but the underlying molecular mechanisms remain poorly understood. We applied an array-based approach to monitor global changes in CpG island hypermethylation between HPV-negative and HPV-positive OPSCCs and identified a specific pattern of differentially methylated regions that critically depends on the presence of viral transcripts. HPV-related alterations were confirmed for the majority of candidate gene promoters by mass spectrometric, quantitative methylation analysis. There was a significant inverse correlation between promoter hypermethylation of ALDH1A2, OSR2, GATA4, GRIA4, and IRX4 and transcript levels. Interestingly, Kaplan-Meier analysis revealed that a combined promoter methylation pattern of low methylation levels in ALDH1A2 and OSR2 promoters and high methylation levels in GATA4, GRIA4, and IRX4 promoters was significantly correlated with improved survival in 3 independent patient cohorts. ALDH1A2 protein levels, determined by immunohistochemistry on tissue microarrays, confirmed the association with clinical outcome. In summary, our study highlights specific alterations in global gene promoter methylation in HPV-driven OPSCCs and identifies a signature that predicts the clinical outcome in OPSCCs.

Authors

Efterpi Kostareli, Dana Holzinger, Olga Bogatyrova, Thomas Hielscher, Gunnar Wichmann, Michaela Keck, Bernd Lahrmann, Niels Grabe, Christa Flechtenmacher, Christopher R. Schmidt, Tanguy Seiwert, Gerhard Dyckhoff, Andreas Dietz, Daniela Höfler, Michael Pawlita, Axel Benner, Franz X. Bosch, Peter Plinkert, Christoph Plass, Dieter Weichenhan, Jochen Hess

×

The genomic landscape of small intestine neuroendocrine tumors
Michaela S. Banck, … , Matthew M. Ames, Andreas S. Beutler
Michaela S. Banck, … , Matthew M. Ames, Andreas S. Beutler
Published May 15, 2013
Citation Information: J Clin Invest. 2013;123(6):2502-2508. https://doi.org/10.1172/JCI67963.
View: Text | PDF

The genomic landscape of small intestine neuroendocrine tumors

  • Text
  • PDF
Abstract

Small intestine neuroendocrine tumors (SI-NETs) are the most common malignancy of the small bowel. Several clinical trials target PI3K/Akt/mTOR signaling; however, it is unknown whether these or other genes are genetically altered in these tumors. To address the underlying genetics, we analyzed 48 SI-NETs by massively parallel exome sequencing. We detected an average of 0.1 somatic single nucleotide variants (SNVs) per 106 nucleotides (range, 0–0.59), mostly transitions (C>T and A>G), which suggests that SI-NETs are stable cancers. 197 protein-altering somatic SNVs affected a preponderance of cancer genes, including FGFR2, MEN1, HOOK3, EZH2, MLF1, CARD11, VHL, NONO, and SMAD1. Integrative analysis of SNVs and somatic copy number variations identified recurrently altered mechanisms of carcinogenesis: chromatin remodeling, DNA damage, apoptosis, RAS signaling, and axon guidance. Candidate therapeutically relevant alterations were found in 35 patients, including SRC, SMAD family genes, AURKA, EGFR, HSP90, and PDGFR. Mutually exclusive amplification of AKT1 or AKT2 was the most common event in the 16 patients with alterations of PI3K/Akt/mTOR signaling. We conclude that sequencing-based analysis may provide provisional grouping of SI-NETs by therapeutic targets or deregulated pathways.

Authors

Michaela S. Banck, Rahul Kanwar, Amit A. Kulkarni, Ganesh K. Boora, Franziska Metge, Benjamin R. Kipp, Lizhi Zhang, Erik C. Thorland, Kay T. Minn, Ramesh Tentu, Bruce W. Eckloff, Eric D. Wieben, Yanhong Wu, Julie M. Cunningham, David M. Nagorney, Judith A. Gilbert, Matthew M. Ames, Andreas S. Beutler

×

Lung tumor NF-κB signaling promotes T cell–mediated immune surveillance
Emily L. Hopewell, … , Dung-Tsa Chen, Amer A. Beg
Emily L. Hopewell, … , Dung-Tsa Chen, Amer A. Beg
Published May 1, 2013
Citation Information: J Clin Invest. 2013;123(6):2509-2522. https://doi.org/10.1172/JCI67250.
View: Text | PDF

Lung tumor NF-κB signaling promotes T cell–mediated immune surveillance

  • Text
  • PDF
Abstract

NF-κB is constitutively activated in many cancer types and is a potential key mediator of tumor-associated inflammation, tumor growth, and metastasis. We investigated the role of cancer cell NF-κB activity in T cell–mediated antitumor responses. In tumors rendered immunogenic by model antigen expression or following administration of antitumor vaccines, we found that high NF-κB activity leads to tumor rejection and/or growth suppression in mice. Using a global RNA expression microarray, we demonstrated that NF-κB enhanced expression of several T cell chemokines, including Ccl2, and decreased CCL2 expression was associated with enhanced tumor growth in a mouse lung cancer model. To investigate NF-κB function in human lung tumors, we identified a gene expression signature in human lung adenocarcinoma cell lines that was associated with NF-κB activity level. In patient tumor samples, overall lung tumor NF-κB activity was strongly associated with T cell infiltration but not with cancer cell proliferation. These results therefore indicate that NF-κB activity mediates immune surveillance and promotes antitumor T cell responses in both murine and human lung cancer.

Authors

Emily L. Hopewell, Weipeng Zhao, William J. Fulp, Crystina C. Bronk, Alexis S. Lopez, Michael Massengill, Scott Antonia, Esteban Celis, Eric B. Haura, Steven A. Enkemann, Dung-Tsa Chen, Amer A. Beg

×

Endocytosis of synaptic ADAM10 in neuronal plasticity and Alzheimer’s disease
Elena Marcello, … , Fabrizio Gardoni, Monica Di Luca
Elena Marcello, … , Fabrizio Gardoni, Monica Di Luca
Published May 8, 2013
Citation Information: J Clin Invest. 2013;123(6):2523-2538. https://doi.org/10.1172/JCI65401.
View: Text | PDF

Endocytosis of synaptic ADAM10 in neuronal plasticity and Alzheimer’s disease

  • Text
  • PDF
Abstract

A disintegrin and metalloproteinase 10 (ADAM10), a disintegrin and metalloproteinase that resides in the postsynaptic densities (PSDs) of excitatory synapses, has previously been shown to limit β-amyloid peptide (Aβ) formation in Alzheimer’s disease (AD). ADAM10 also plays a critical role in regulating functional membrane proteins at the synapse. Using human hippocampal homogenates, we found that ADAM10 removal from the plasma membrane was mediated by clathrin-dependent endocytosis. Additionally, we identified the clathrin adaptor AP2 as an interacting partner of a previously uncharacterized atypical binding motif in the ADAM10 C-terminal domain. This domain was required for ADAM10 endocytosis and modulation of its plasma membrane levels. We found that the ADAM10/AP2 association was increased in the hippocampi of AD patients compared with healthy controls. Long-term potentiation (LTP) in hippocampal neuronal cultures induced ADAM10 endocytosis through AP2 association and decreased surface ADAM10 levels and activity. Conversely, long-term depression (LTD) promoted ADAM10 synaptic membrane insertion and stimulated its activity. ADAM10 interaction with the synapse-associated protein-97 (SAP97) was necessary for LTD-induced ADAM10 trafficking and required for LTD maintenance and LTD-induced changes in spine morphogenesis. These data identify and characterize a mechanism controlling ADAM10 localization and activity at excitatory synapses that is relevant to AD pathogenesis.

Authors

Elena Marcello, Claudia Saraceno, Stefano Musardo, Hugo Vara, Alerie Guzman de la Fuente, Silvia Pelucchi, Daniele Di Marino, Barbara Borroni, Anna Tramontano, Isabel Pérez-Otaño, Alessandro Padovani, Maurizio Giustetto, Fabrizio Gardoni, Monica Di Luca

×

BMPR2 is required for postimplantation uterine function and pregnancy maintenance
Takashi Nagashima, … , Francesco J. DeMayo, Martin M. Matzuk
Takashi Nagashima, … , Francesco J. DeMayo, Martin M. Matzuk
Published May 8, 2013
Citation Information: J Clin Invest. 2013;123(6):2539-2550. https://doi.org/10.1172/JCI65710.
View: Text | PDF

BMPR2 is required for postimplantation uterine function and pregnancy maintenance

  • Text
  • PDF
Abstract

Abnormalities in cell-cell communication and growth factor signaling pathways can lead to defects in maternal-fetal interactions during pregnancy, including immunologic rejection of the fetal/placental unit. In this study, we discovered that bone morphogenetic protein receptor type 2 (BMPR2) is essential for postimplantation physiology and fertility. Despite normal implantation and early placental/fetal development, deletion of Bmpr2 in the uterine deciduae of mice triggered midgestation abnormalities in decidualization that resulted in abnormal vascular development, trophoblast defects, and a deficiency of uterine natural killer cells. Absence of BMPR2 signaling in the uterine decidua consequently suppressed IL-15, VEGF, angiopoietin, and corin signaling. Disruption of these pathways collectively lead to placental abruption, fetal demise, and female sterility, thereby placing BMPR2 at a central point in the regulation of several physiologic signaling pathways and events at the maternal-fetal interface. Since trophoblast invasion and uterine vascular modification are implicated in normal placentation and fetal growth in humans, our findings suggest that abnormalities in uterine BMPR2-mediated signaling pathways can have catastrophic consequences in women for the maintenance of pregnancy.

Authors

Takashi Nagashima, Qinglei Li, Caterina Clementi, John P. Lydon, Francesco J. DeMayo, Martin M. Matzuk

×

RSK3/4 mediate resistance to PI3K pathway inhibitors in breast cancer
Violeta Serra, … , So Young Kim, José Baselga
Violeta Serra, … , So Young Kim, José Baselga
Published May 1, 2013
Citation Information: J Clin Invest. 2013;123(6):2551-2563. https://doi.org/10.1172/JCI66343.
View: Text | PDF | Corrigendum

RSK3/4 mediate resistance to PI3K pathway inhibitors in breast cancer

  • Text
  • PDF
Abstract

The PI3K signaling pathway regulates diverse cellular processes, including proliferation, survival, and metabolism, and is aberrantly activated in human cancer. As such, numerous compounds targeting the PI3K pathway are currently being clinically evaluated for the treatment of cancer, and several have shown some early indications of efficacy in breast cancer. However, resistance against these agents, both de novo and acquired, may ultimately limit the efficacy of these compounds. Here, we have taken a systematic functional approach to uncovering potential mechanisms of resistance to PI3K inhibitors and have identified several genes whose expression promotes survival under conditions of PI3K/mammalian target of rapamycin (PI3K/mTOR) blockade, including the ribosomal S6 kinases RPS6KA2 (RSK3) and RPS6KA6 (RSK4). We demonstrate that overexpression of RSK3 or RSK4 supports proliferation upon PI3K inhibition both in vitro and in vivo, in part through the attenuation of the apoptotic response and upregulation of protein translation. Notably, the addition of MEK- or RSK-specific inhibitors can overcome these resistance phenotypes, both in breast cancer cell lines and patient-derived xenograft models with elevated levels of RSK activity. These observations provide a strong rationale for the combined use of RSK and PI3K pathway inhibitors to elicit favorable responses in breast cancer patients with activated RSK.

Authors

Violeta Serra, Pieter J.A. Eichhorn, Celina García-García, Yasir H. Ibrahim, Ludmila Prudkin, Gertrudis Sánchez, Olga Rodríguez, Pilar Antón, Josep-Lluís Parra, Sara Marlow, Maurizio Scaltriti, José Pérez-Garcia, Aleix Prat, Joaquín Arribas, William C. Hahn, So Young Kim, José Baselga

×

Nuclear receptor/microRNA circuitry links muscle fiber type to energy metabolism
Zhenji Gan, … , Anastasia Kralli, Daniel P. Kelly
Zhenji Gan, … , Anastasia Kralli, Daniel P. Kelly
Published May 8, 2013
Citation Information: J Clin Invest. 2013;123(6):2564-2575. https://doi.org/10.1172/JCI67652.
View: Text | PDF

Nuclear receptor/microRNA circuitry links muscle fiber type to energy metabolism

  • Text
  • PDF
Abstract

The mechanisms involved in the coordinate regulation of the metabolic and structural programs controlling muscle fitness and endurance are unknown. Recently, the nuclear receptor PPARβ/δ was shown to activate muscle endurance programs in transgenic mice. In contrast, muscle-specific transgenic overexpression of the related nuclear receptor, PPARα, results in reduced capacity for endurance exercise. We took advantage of the divergent actions of PPARβ/δ and PPARα to explore the downstream regulatory circuitry that orchestrates the programs linking muscle fiber type with energy metabolism. Our results indicate that, in addition to the well-established role in transcriptional control of muscle metabolic genes, PPARβ/δ and PPARα participate in programs that exert opposing actions upon the type I fiber program through a distinct muscle microRNA (miRNA) network, dependent on the actions of another nuclear receptor, estrogen-related receptor γ (ERRγ). Gain-of-function and loss-of-function strategies in mice, together with assessment of muscle biopsies from humans, demonstrated that type I muscle fiber proportion is increased via the stimulatory actions of ERRγ on the expression of miR-499 and miR-208b. This nuclear receptor/miRNA regulatory circuit shows promise for the identification of therapeutic targets aimed at maintaining muscle fitness in a variety of chronic disease states, such as obesity, skeletal myopathies, and heart failure.

Authors

Zhenji Gan, John Rumsey, Bethany C. Hazen, Ling Lai, Teresa C. Leone, Rick B. Vega, Hui Xie, Kevin E. Conley, Johan Auwerx, Steven R. Smith, Eric N. Olson, Anastasia Kralli, Daniel P. Kelly

×

Acylglycerol kinase augments JAK2/STAT3 signaling in esophageal squamous cells
Xiuting Chen, … , Mengfeng Li, Libing Song
Xiuting Chen, … , Mengfeng Li, Libing Song
Published May 8, 2013
Citation Information: J Clin Invest. 2013;123(6):2576-2589. https://doi.org/10.1172/JCI68143.
View: Text | PDF

Acylglycerol kinase augments JAK2/STAT3 signaling in esophageal squamous cells

  • Text
  • PDF
Abstract

JAK2 activity is tightly controlled through a self-inhibitory effect via its JAK homology domain 2 (JH2), which restricts the strength and duration of JAK2/STAT3 signaling under physiological conditions. Although multiple mutations within JAK2, which abrogate the function of JH2 and sustain JAK2 activation, are widely observed in hematological malignancies, comparable mutations have not been detected in solid tumors. How solid tumor cells override the autoinhibitory effect of the JH2 domain to maintain constitutive activation of JAK2/STAT3 signaling remains puzzling. Herein, we demonstrate that AGK directly interacted with the JH2 domain to relieve inhibition of JAK2 and activate JAK2/STAT3 signaling. Overexpression of AGK sustained constitutive JAK2/STAT3 activation, consequently promoting the cancer stem cell population and augmenting the tumorigenicity of esophageal squamous cell carcinoma (ESCC) cells both in vivo and in vitro. Furthermore, AGK levels significantly correlated with increased STAT3 phosphorylation, poorer disease-free survival, and shorter overall survival in primary ESCC. More importantly, AGK expression was significantly correlated with JAK2/STAT3 hyperactivation in ESCC, as well as in lung and breast cancer. These findings uncover a mechanism for constitutive activation of JAK2/STAT3 signaling in solid tumors and may represent a prognostic biomarker and therapeutic target.

Authors

Xiuting Chen, Zhe Ying, Xi Lin, Huanxin Lin, Jueheng Wu, Mengfeng Li, Libing Song

×

Safe TNF-based antitumor therapy following p55TNFR reduction in intestinal epithelium
Filip Van Hauwermeiren, … , Claude Libert, George Kollias
Filip Van Hauwermeiren, … , Claude Libert, George Kollias
Published May 15, 2013
Citation Information: J Clin Invest. 2013;123(6):2590-2603. https://doi.org/10.1172/JCI65624.
View: Text | PDF

Safe TNF-based antitumor therapy following p55TNFR reduction in intestinal epithelium

  • Text
  • PDF
Abstract

TNF has remarkable antitumor activities; however, therapeutic applications have not been possible because of the systemic and lethal proinflammatory effects induced by TNF. Both the antitumor and inflammatory effects of TNF are mediated by the TNF receptor p55 (p55TNFR) (encoded by the Tnfrsf1a gene). The antitumor effect stems from an induction of cell death in tumor endothelium, but the cell type that initiates the lethal inflammatory cascade has been unclear. Using conditional Tnfrsf1a knockout or reactivation mice, we found that the expression level of p55TNFR in intestinal epithelial cells (IECs) is a crucial determinant in TNF-induced lethal inflammation. Remarkably, tumor endothelium and IECs exhibited differential sensitivities to TNF when p55TNFR levels were reduced. Tumor-bearing Tnfrsf1a+/– or IEC-specific p55TNFR-deficient mice showed resistance to TNF-induced lethality, while the tumor endothelium remained fully responsive to TNF-induced apoptosis and tumors regressed. We demonstrate proof of principle for clinical application of this approach using neutralizing anti-human p55TNFR antibodies in human TNFRSF1A knockin mice. Our results uncover an important cellular basis of TNF toxicity and reveal that IEC-specific or systemic reduction of p55TNFR mitigates TNF toxicity without loss of antitumor efficacy.

Authors

Filip Van Hauwermeiren, Marietta Armaka, Niki Karagianni, Ksanthi Kranidioti, Roosmarijn E. Vandenbroucke, Sonja Loges, Maarten Van Roy, Jan Staelens, Leen Puimège, Ajay Palagani, Wim Vanden Berghe, Panayiotis Victoratos, Peter Carmeliet, Claude Libert, George Kollias

×

PD-L1 blockade synergizes with IL-2 therapy in reinvigorating exhausted T cells
Erin E. West, … , Kendall A. Smith, Rafi Ahmed
Erin E. West, … , Kendall A. Smith, Rafi Ahmed
Published May 15, 2013
Citation Information: J Clin Invest. 2013;123(6):2604-2615. https://doi.org/10.1172/JCI67008.
View: Text | PDF

PD-L1 blockade synergizes with IL-2 therapy in reinvigorating exhausted T cells

  • Text
  • PDF
Abstract

The inhibitory receptor programmed cell death 1 (PD-1) plays a major role in functional exhaustion of T cells during chronic infections and cancer, and recent clinical data suggest that blockade of the PD-1 pathway is an effective immunotherapy in treating certain cancers. Thus, it is important to define combinatorial approaches that increase the efficacy of PD-1 blockade. To address this issue, we examined the effect of IL-2 and PD-1 ligand 1 (PD-L1) blockade in the mouse model of chronic lymphocytic choriomeningitis virus (LCMV) infection. We found that low-dose IL-2 administration alone enhanced CD8+ T cell responses in chronically infected mice. IL-2 treatment also decreased inhibitory receptor levels on virus-specific CD8+ T cells and increased expression of CD127 and CD44, resulting in a phenotype resembling that of memory T cells. Surprisingly, IL-2 therapy had only a minimal effect on reducing viral load. However, combining IL-2 treatment with blockade of the PD-1 inhibitory pathway had striking synergistic effects in enhancing virus-specific CD8+ T cell responses and decreasing viral load. Interestingly, this reduction in viral load occurred despite increased numbers of Tregs. These results suggest that combined IL-2 therapy and PD-L1 blockade merits consideration as a regimen for treating human chronic infections and cancer.

Authors

Erin E. West, Hyun-Tak Jin, Ata-Ur Rasheed, Pablo Penaloza-MacMaster, Sang-Jun Ha, Wendy G. Tan, Ben Youngblood, Gordon J. Freeman, Kendall A. Smith, Rafi Ahmed

×

Efficacious proteasome/HDAC inhibitor combination therapy for primary effusion lymphoma
Shruti Bhatt, … , Izidore S. Lossos, Juan Carlos Ramos
Shruti Bhatt, … , Izidore S. Lossos, Juan Carlos Ramos
Published May 1, 2013
Citation Information: J Clin Invest. 2013;123(6):2616-2628. https://doi.org/10.1172/JCI64503.
View: Text | PDF

Efficacious proteasome/HDAC inhibitor combination therapy for primary effusion lymphoma

  • Text
  • PDF
Abstract

Primary effusion lymphoma (PEL) is a rare form of aggressive B cell lymphoma caused by Kaposi’s sarcoma-associated herpesvirus (KSHV). Current chemotherapy approaches result in dismal outcomes, and there is an urgent need for new PEL therapies. Previously, we established, in a direct xenograft model of PEL-bearing immune-compromised mice, that treatment with the proteasome inhibitor, bortezomib (Btz), increased survival relative to that after treatment with doxorubicin. Herein, we demonstrate that the combination of Btz with the histone deacetylase (HDAC) inhibitor suberoylanilidehydroxamic acid (SAHA, also known as vorinostat) potently reactivates KSHV lytic replication and induces PEL cell death, resulting in significantly prolonged survival of PEL-bearing mice. Importantly, Btz blocked KSHV late lytic gene expression, terminally inhibiting the full lytic cascade and production of infectious virus in vivo. Btz treatment led to caspase activation and induced DNA damage, as evidenced by the accumulation of phosphorylated γH2AX and p53. The addition of SAHA to Btz treatment was synergistic, as SAHA induced early acetylation of p53 and reduced interaction with its negative regulator MDM2, augmenting the effects of Btz. The eradication of KSHV-infected PEL cells without increased viremia in mice provides a strong rationale for using the proteasome/HDAC inhibitor combination therapy in PEL.

Authors

Shruti Bhatt, Brittany M. Ashlock, Ngoc L. Toomey, Luis A. Diaz, Enrique A. Mesri, Izidore S. Lossos, Juan Carlos Ramos

×

PD1-based DNA vaccine amplifies HIV-1 GAG-specific CD8+ T cells in mice
Jingying Zhou, … , Kwok-Yung Yuen, Zhiwei Chen
Jingying Zhou, … , Kwok-Yung Yuen, Zhiwei Chen
Published May 1, 2013
Citation Information: J Clin Invest. 2013;123(6):2629-2642. https://doi.org/10.1172/JCI64704.
View: Text | PDF

PD1-based DNA vaccine amplifies HIV-1 GAG-specific CD8+ T cells in mice

  • Text
  • PDF
Abstract

Viral vector–based vaccines that induce protective CD8+ T cell immunity can prevent or control pathogenic SIV infections, but issues of preexisting immunity and safety have impeded their implementation in HIV-1. Here, we report the development of what we believe to be a novel antigen-targeting DNA vaccine strategy that exploits the binding of programmed death-1 (PD1) to its ligands expressed on dendritic cells (DCs) by fusing soluble PD1 with HIV-1 GAG p24 antigen. As compared with non–DC-targeting vaccines, intramuscular immunization via electroporation (EP) of the fusion DNA in mice elicited consistently high frequencies of GAG-specific, broadly reactive, polyfunctional, long-lived, and cytotoxic CD8+ T cells and robust anti-GAG antibody titers. Vaccination conferred remarkable protection against mucosal challenge with vaccinia GAG viruses. Soluble PD1–based vaccination potentiated CD8+ T cell responses by enhancing antigen binding and uptake in DCs and activation in the draining lymph node. It also increased IL-12–producing DCs and engaged antigen cross-presentation when compared with anti-DEC205 antibody-mediated DC targeting. The high frequency of durable and protective GAG-specific CD8+ T cell immunity induced by soluble PD1–based vaccination suggests that PD1-based DNA vaccines could potentially be used against HIV-1 and other pathogens.

Authors

Jingying Zhou, Allen K.L. Cheung, Zhiwu Tan, Haibo Wang, Wenbo Yu, Yanhua Du, Yuanxi Kang, Xiaofan Lu, Li Liu, Kwok-Yung Yuen, Zhiwei Chen

×

Endothelin-2 deficiency causes growth retardation, hypothermia, and emphysema in mice
Inik Chang, … , Roderick R. McInnes, Masashi Yanagisawa
Inik Chang, … , Roderick R. McInnes, Masashi Yanagisawa
Published May 8, 2013
Citation Information: J Clin Invest. 2013;123(6):2643-2653. https://doi.org/10.1172/JCI66735.
View: Text | PDF

Endothelin-2 deficiency causes growth retardation, hypothermia, and emphysema in mice

  • Text
  • PDF
Abstract

To explore the physiological functions of endothelin-2 (ET-2), we generated gene-targeted mouse models. Global Et2 knockout mice exhibited severe growth retardation and juvenile lethality. Despite normal milk intake, they suffered from internal starvation characterized by hypoglycemia, ketonemia, and increased levels of starvation-induced genes. Although ET-2 is abundantly expressed in the gastrointestinal tract, the intestine was morphologically and functionally normal. Moreover, intestinal epithelium–specific Et2 knockout mice showed no abnormalities in growth and survival. Global Et2 knockout mice were also profoundly hypothermic. Housing Et2 knockout mice in a warm environment significantly extended their median lifespan. However, neuron-specific Et2 knockout mice displayed a normal core body temperature. Low levels of Et2 mRNA were also detected in the lung, with transient increases soon after birth. The lungs of Et2 knockout mice showed emphysematous structural changes with an increase in total lung capacity, resulting in chronic hypoxemia, hypercapnia, and increased erythropoietin synthesis. Finally, systemically inducible ET-2 deficiency in neonatal and adult mice fully reproduced the phenotype previously observed in global Et2 knockout mice. Together, these findings reveal that ET-2 is critical for the growth and survival of postnatal mice and plays important roles in energy homeostasis, thermoregulation, and the maintenance of lung morphology and function.

Authors

Inik Chang, Alexa N. Bramall, Amy Greenstein Baynash, Amir Rattner, Dinesh Rakheja, Martin Post, Stephen Joza, Colin McKerlie, Duncan J. Stewart, Roderick R. McInnes, Masashi Yanagisawa

×

Adoptively transferred TRAIL+ T cells suppress GVHD and augment antitumor activity
Arnab Ghosh, … , Vladimir Ponomarev, Marcel R.M. van den Brink
Arnab Ghosh, … , Vladimir Ponomarev, Marcel R.M. van den Brink
Published May 15, 2013
Citation Information: J Clin Invest. 2013;123(6):2654-2662. https://doi.org/10.1172/JCI66301.
View: Text | PDF

Adoptively transferred TRAIL+ T cells suppress GVHD and augment antitumor activity

  • Text
  • PDF
Abstract

Current strategies to suppress graft-versus-host disease (GVHD) also compromise graft-versus-tumor (GVT) responses. Furthermore, most experimental strategies to separate GVHD and GVT responses merely spare GVT function without actually enhancing it. We have previously shown that endogenously expressed TNF-related apoptosis-inducing ligand (TRAIL) is required for optimal GVT activity against certain malignancies in recipients of allogeneic hematopoietic stem cell transplantation (allo-HSCT). In order to model a donor-derived cellular therapy, we genetically engineered T cells to overexpress TRAIL and adoptively transferred donor-type unsorted TRAIL+ T cells into mouse models of allo-HSCT. We found that murine TRAIL+ T cells induced apoptosis of alloreactive T cells, thereby reducing GVHD in a DR5-dependent manner. Furthermore, murine TRAIL+ T cells mediated enhanced in vitro and in vivo antilymphoma GVT response. Moreover, human TRAIL+ T cells mediated enhanced in vitro cytotoxicity against both human leukemia cell lines and against freshly isolated chronic lymphocytic leukemia (CLL) cells. Finally, as a model of off-the-shelf, donor-unrestricted antitumor cellular therapy, in vitro#x02013;generated TRAIL+ precursor T cells from third-party donors also mediated enhanced GVT response in the absence of GVHD. These data indicate that TRAIL-overexpressing donor T cells could potentially enhance the curative potential of allo-HSCT by increasing GVT response and suppressing GVHD.

Authors

Arnab Ghosh, Yildirim Dogan, Maxim Moroz, Amanda M. Holland, Nury L. Yim, Uttam K. Rao, Lauren F. Young, Daniel Tannenbaum, Durva Masih, Enrico Velardi, Jennifer J. Tsai, Robert R. Jenq, Olaf Penack, Alan M. Hanash, Odette M. Smith, Kelly Piersanti, Cecilia Lezcano, George F. Murphy, Chen Liu, M. Lia Palomba, Martin G. Sauer, Michel Sadelain, Vladimir Ponomarev, Marcel R.M. van den Brink

×

Cognate antigen directs CD8+ T cell migration to vascularized transplants
Jeffrey M. Walch, … , Geoffrey Camirand, Fadi G. Lakkis
Jeffrey M. Walch, … , Geoffrey Camirand, Fadi G. Lakkis
Published May 15, 2013
Citation Information: J Clin Invest. 2013;123(6):2663-2671. https://doi.org/10.1172/JCI66722.
View: Text | PDF

Cognate antigen directs CD8+ T cell migration to vascularized transplants

  • Text
  • PDF
Abstract

The migration of effector or memory T cells to the graft is a critical event in the rejection of transplanted organs. The prevailing view is that the key steps involved in T cell migration — integrin-mediated firm adhesion followed by transendothelial migration — are dependent on the activation of Gαi-coupled chemokine receptors on T cells. In contrast to this view, we demonstrated in vivo that cognate antigen was necessary for the firm adhesion and transendothelial migration of CD8+ effector T cells specific to graft antigens and that both steps occurred independent of Gαi signaling. Presentation of cognate antigen by either graft endothelial cells or bone marrow–derived APCs that extend into the capillary lumen was sufficient for T cell migration. The adhesion and transmigration of antigen-nonspecific (bystander) effector T cells, on the other hand, remained dependent on Gαi, but required the presence of antigen-specific effector T cells. These findings underscore the primary role of cognate antigen presented by either endothelial cells or bone marrow–derived APCs in the migration of T cells across endothelial barriers and have important implications for the prevention and treatment of graft rejection.

Authors

Jeffrey M. Walch, Qiang Zeng, Qi Li, Martin H. Oberbarnscheidt, Rosemary A. Hoffman, Amanda L. Williams, David M. Rothstein, Warren D. Shlomchik, Jiyun V. Kim, Geoffrey Camirand, Fadi G. Lakkis

×

Persistent G. lamblia impairs growth in a murine malnutrition model
Luther A. Bartelt, … , Steven Singer, Richard Guerrant
Luther A. Bartelt, … , Steven Singer, Richard Guerrant
Published May 24, 2013
Citation Information: J Clin Invest. 2013;123(6):2672-2684. https://doi.org/10.1172/JCI67294.
View: Text | PDF

Persistent G. lamblia impairs growth in a murine malnutrition model

  • Text
  • PDF
Abstract

Giardia lamblia infections are nearly universal among children in low-income countries and are syndemic with the triumvirate of malnutrition, diarrhea, and developmental growth delays. Amidst the morass of early childhood enteropathogen exposures in these populations, G. lamblia–specific associations with persistent diarrhea, cognitive deficits, stunting, and nutrient deficiencies have demonstrated conflicting results, placing endemic pediatric giardiasis in a state of equipoise. Many infections in endemic settings appear to be asymptomatic/subclinical, further contributing to uncertainty regarding a causal link between G. lamblia infection and developmental delay. We used G. lamblia H3 cyst infection in a weaned mouse model of malnutrition to demonstrate that persistent giardiasis leads to epithelial cell apoptosis and crypt hyperplasia. Infection was associated with a Th2-biased inflammatory response and impaired growth. Malnutrition accentuated the severity of these growth decrements. Faltering malnourished mice exhibited impaired compensatory responses following infection and demonstrated an absence of crypt hyperplasia and subsequently blunted villus architecture. Concomitantly, severe malnutrition prevented increases in B220+ cells in the lamina propria as well as mucosal Il4 and Il5 mRNA in response to infection. These findings add insight into the potential role of G. lamblia as a “stunting” pathogen and suggest that, similarly, malnourished children may be at increased risk of G. lamblia–potentiated growth decrements.

Authors

Luther A. Bartelt, James Roche, Glynis Kolling, David Bolick, Francisco Noronha, Caitlin Naylor, Paul Hoffman, Cirle Warren, Steven Singer, Richard Guerrant

×

Intestinal CFTR expression alleviates meconium ileus in cystic fibrosis pigs
David A. Stoltz, … , David K. Meyerholz, Michael J. Welsh
David A. Stoltz, … , David K. Meyerholz, Michael J. Welsh
Published May 8, 2013
Citation Information: J Clin Invest. 2013;123(6):2685-2693. https://doi.org/10.1172/JCI68867.
View: Text | PDF Technical Advance

Intestinal CFTR expression alleviates meconium ileus in cystic fibrosis pigs

  • Text
  • PDF
Abstract

Cystic fibrosis (CF) pigs develop disease with features remarkably similar to those in people with CF, including exocrine pancreatic destruction, focal biliary cirrhosis, micro-gallbladder, vas deferens loss, airway disease, and meconium ileus. Whereas meconium ileus occurs in 15% of babies with CF, the penetrance is 100% in newborn CF pigs. We hypothesized that transgenic expression of porcine CF transmembrane conductance regulator (pCFTR) cDNA under control of the intestinal fatty acid–binding protein (iFABP) promoter would alleviate the meconium ileus. We produced 5 CFTR–/–;TgFABP>pCFTR lines. In 3 lines, intestinal expression of CFTR at least partially restored CFTR-mediated anion transport and improved the intestinal phenotype. In contrast, these pigs still had pancreatic destruction, liver disease, and reduced weight gain, and within weeks of birth, they developed sinus and lung disease, the severity of which varied over time. These data indicate that expressing CFTR in intestine without pancreatic or hepatic correction is sufficient to rescue meconium ileus. Comparing CFTR expression in different lines revealed that approximately 20% of wild-type CFTR mRNA largely prevented meconium ileus. This model may be of value for understanding CF pathophysiology and testing new preventions and therapies.

Authors

David A. Stoltz, Tatiana Rokhlina, Sarah E. Ernst, Alejandro A. Pezzulo, Lynda S. Ostedgaard, Philip H. Karp, Melissa S. Samuel, Leah R. Reznikov, Michael V. Rector, Nicholas D. Gansemer, Drake C. Bouzek, Mahmoud H. Abou Alaiwa, Mark J. Hoegger, Paula S. Ludwig, Peter J. Taft, Tanner J. Wallen, Christine Wohlford-Lenane, James D. McMenimen, Jeng-Haur Chen, Katrina L. Bogan, Ryan J. Adam, Emma E. Hornick, George A. Nelson IV, Eric A. Hoffman, Eugene H. Chang, Joseph Zabner, Paul B. McCray Jr., Randall S. Prather, David K. Meyerholz, Michael J. Welsh

×

Multicolor microRNA FISH effectively differentiates tumor types
Neil Renwick, … , Yuan Chang, Thomas Tuschl
Neil Renwick, … , Yuan Chang, Thomas Tuschl
Published May 24, 2013
Citation Information: J Clin Invest. 2013;123(6):2694-2702. https://doi.org/10.1172/JCI68760.
View: Text | PDF Technical Advance

Multicolor microRNA FISH effectively differentiates tumor types

  • Text
  • PDF
Abstract

MicroRNAs (miRNAs) are excellent tumor biomarkers because of their cell-type specificity and abundance. However, many miRNA detection methods, such as real-time PCR, obliterate valuable visuospatial information in tissue samples. To enable miRNA visualization in formalin-fixed paraffin-embedded (FFPE) tissues, we developed multicolor miRNA FISH. As a proof of concept, we used this method to differentiate two skin tumors, basal cell carcinoma (BCC) and Merkel cell carcinoma (MCC), with overlapping histologic features but distinct cellular origins. Using sequencing-based miRNA profiling and discriminant analysis, we identified the tumor-specific miRNAs miR-205 and miR-375 in BCC and MCC, respectively. We addressed three major shortcomings in miRNA FISH, identifying optimal conditions for miRNA fixation and ribosomal RNA (rRNA) retention using model compounds and high-pressure liquid chromatography (HPLC) analyses, enhancing signal amplification and detection by increasing probe-hapten linker lengths, and improving probe specificity using shortened probes with minimal rRNA sequence complementarity. We validated our method on 4 BCC and 12 MCC tumors. Amplified miR-205 and miR-375 signals were normalized against directly detectable reference rRNA signals. Tumors were classified using predefined cutoff values, and all were correctly identified in blinded analysis. Our study establishes a reliable miRNA FISH technique for parallel visualization of differentially expressed miRNAs in FFPE tumor tissues.

Authors

Neil Renwick, Pavol Cekan, Paul A. Masry, Sean E. McGeary, Jason B. Miller, Markus Hafner, Zhen Li, Aleksandra Mihailovic, Pavel Morozov, Miguel Brown, Tasos Gogakos, Mehrpouya B. Mobin, Einar L. Snorrason, Harriet E. Feilotter, Xiao Zhang, Clifford S. Perlis, Hong Wu, Mayte Suárez-Fariñas, Huichen Feng, Masahiro Shuda, Patrick S. Moore, Victor A. Tron, Yuan Chang, Thomas Tuschl

×

MicroRNA-mediated loss of ADAR1 in metastatic melanoma promotes tumor growth
Yael Nemlich, … , Gideon Rechavi, Gal Markel
Yael Nemlich, … , Gideon Rechavi, Gal Markel
Published May 24, 2013
Citation Information: J Clin Invest. 2013;123(6):2703-2718. https://doi.org/10.1172/JCI62980.
View: Text | PDF

MicroRNA-mediated loss of ADAR1 in metastatic melanoma promotes tumor growth

  • Text
  • PDF
Abstract

Some solid tumors have reduced posttranscriptional RNA editing by adenosine deaminase acting on RNA (ADAR) enzymes, but the functional significance of this alteration has been unclear. Here, we found the primary RNA-editing enzyme ADAR1 is frequently reduced in metastatic melanomas. In situ analysis of melanoma samples using progression tissue microarrays indicated a substantial downregulation of ADAR1 during the metastatic transition. Further, ADAR1 knockdown altered cell morphology, promoted in vitro proliferation, and markedly enhanced the tumorigenicity in vivo. A comparative whole genome expression microarray analysis revealed that ADAR1 controls the expression of more than 100 microRNAs (miRNAs) that regulate many genes associated with the observed phenotypes. Importantly, we discovered that ADAR1 fundamentally regulates miRNA processing in an RNA binding–dependent, yet RNA editing–independent manner by regulating Dicer expression at the translational level via let-7. In addition, ADAR1 formed a complex with DGCR8 that was mutually exclusive with the DGCR8-Drosha complex that processes pri-miRNAs in the nucleus. We found that cancer cells silence ADAR1 by overexpressing miR-17 and miR-432, which both directly target the ADAR1 transcript. We further demonstrated that the genes encoding miR-17 and miR-432 are frequently amplified in melanoma and that aberrant hypomethylation of the imprinted DLK1-DIO3 region in chromosome 14 can also drive miR-432 overexpression.

Authors

Yael Nemlich, Eyal Greenberg, Rona Ortenberg, Michal J. Besser, Iris Barshack, Jasmine Jacob-Hirsch, Elad Jacoby, Eran Eyal, Ludmila Rivkin, Victor G. Prieto, Nitin Chakravarti, Lyn M. Duncan, David M. Kallenberg, Eitan Galun, Dorothy C. Bennett, Ninette Amariglio, Menashe Bar-Eli, Jacob Schachter, Gideon Rechavi, Gal Markel

×

Lamin B1 mediates cell-autonomous neuropathology in a leukodystrophy mouse model
Mary Y. Heng, … , Louis J. Ptáček, Ying-Hui Fu
Mary Y. Heng, … , Louis J. Ptáček, Ying-Hui Fu
Published May 15, 2013
Citation Information: J Clin Invest. 2013;123(6):2719-2729. https://doi.org/10.1172/JCI66737.
View: Text | PDF

Lamin B1 mediates cell-autonomous neuropathology in a leukodystrophy mouse model

  • Text
  • PDF
Abstract

Adult-onset autosomal-dominant leukodystrophy (ADLD) is a progressive and fatal neurological disorder characterized by early autonomic dysfunction, cognitive impairment, pyramidal tract and cerebellar dysfunction, and white matter loss in the central nervous system. ADLD is caused by duplication of the LMNB1 gene, which results in increased lamin B1 transcripts and protein expression. How duplication of LMNB1 leads to myelin defects is unknown. To address this question, we developed a mouse model of ADLD that overexpresses lamin B1. These mice exhibited cognitive impairment and epilepsy, followed by age-dependent motor deficits. Selective overexpression of lamin B1 in oligodendrocytes also resulted in marked motor deficits and myelin defects, suggesting these deficits are cell autonomous. Proteomic and genome-wide transcriptome studies indicated that lamin B1 overexpression is associated with downregulation of proteolipid protein, a highly abundant myelin sheath component that was previously linked to another myelin-related disorder, Pelizaeus-Merzbacher disease. Furthermore, we found that lamin B1 overexpression leads to reduced occupancy of Yin Yang 1 transcription factor at the promoter region of proteolipid protein. These studies identify a mechanism by which lamin B1 overexpression mediates oligodendrocyte cell–autonomous neuropathology in ADLD and implicate lamin B1 as an important regulator of myelin formation and maintenance during aging.

Authors

Mary Y. Heng, Shu-Ting Lin, Laure Verret, Yong Huang, Sherry Kamiya, Quasar S. Padiath, Ying Tong, Jorge J. Palop, Eric J. Huang, Louis J. Ptáček, Ying-Hui Fu

×

Exenatide and the treatment of patients with Parkinson’s disease
Iciar Aviles-Olmos, … , Patricia Limousin, Thomas Foltynie
Iciar Aviles-Olmos, … , Patricia Limousin, Thomas Foltynie
Published May 20, 2013
Citation Information: J Clin Invest. 2013;123(6):2730-2736. https://doi.org/10.1172/JCI68295.
View: Text | PDF Clinical Research and Public Health

Exenatide and the treatment of patients with Parkinson’s disease

  • Text
  • PDF
Abstract

Background. There is increasing interest in methods to more rapidly and cost-efficiently investigate drugs that are approved for clinical use in the treatment of another condition. Exenatide is a type 2 diabetes treatment that has been shown to have neuroprotective/neurorestorative properties in preclinical models of neurodegeneration.

Methods. As a proof of concept, using a single-blind trial design, we evaluated the progress of 45 patients with moderate Parkinson’s disease (PD), randomly assigned to receive subcutaneous exenatide injection for 12 months or to act as controls. Their PD was compared after overnight withdrawal of conventional PD medication using blinded video assessment of the Movement Disorders Society Unified Parkinson’s Disease Rating Scale (MDS-UPDRS), together with several nonmotor tests, at baseline, 6 months, and 12 months and after a further 2-month washout period (14 months).

Results. Exenatide was well tolerated, although weight loss was common and l-dopa dose failures occurred in a single patient. Single-blinded rating of the exenatide group suggested clinically relevant improvements in PD across motor and cognitive measures compared with the control group. Exenatide-treated patients had a mean improvement at 12 months on the MDS-UPDRS of 2.7 points, compared with mean decline of 2.2 points in control patients (P = 0.037).

Conclusion. These results demonstrate a potential cost-efficient approach through which preliminary clinical data of possible biological effects are obtainable, prior to undertaking the major investment required for double-blind trials of a potential disease-modifying drug in PD.

Trial registration. Clinicaltrials.gov NCT01174810.

Funding. Cure Parkinson’s Trust.

Authors

Iciar Aviles-Olmos, John Dickson, Zinovia Kefalopoulou, Atbin Djamshidian, Peter Ell, Therese Soderlund, Peter Whitton, Richard Wyse, Tom Isaacs, Andrew Lees, Patricia Limousin, Thomas Foltynie

×

Specific peripheral B cell tolerance defects in patients with multiple sclerosis
Tuure Kinnunen, … , Kevin C. O’Connor, Eric Meffre
Tuure Kinnunen, … , Kevin C. O’Connor, Eric Meffre
Published May 15, 2013
Citation Information: J Clin Invest. 2013;123(6):2737-2741. https://doi.org/10.1172/JCI68775.
View: Text | PDF Brief Report

Specific peripheral B cell tolerance defects in patients with multiple sclerosis

  • Text
  • PDF
Abstract

Multiple sclerosis (MS) is a genetically mediated autoimmune disease of the central nervous system. B cells have recently emerged as major contributors to disease pathogenesis, but the mechanisms responsible for the loss of B cell tolerance in patients with MS are largely unknown. In healthy individuals, developing autoreactive B cells are removed from the repertoire at 2 tolerance checkpoints during early B cell development. Both of these central and peripheral B cell tolerance checkpoints are defective in patients with rheumatoid arthritis (RA) and type 1 diabetes (T1D). Here, we found that only the peripheral, but not the central, B cell tolerance checkpoint is defective in patients with MS. We show that this specific defect is accompanied by increased activation and homeostatic proliferation of mature naive B cells. Interestingly, all of these MS features parallel defects observed in FOXP3-deficient IPEX patients, who harbor nonfunctional Tregs. We demonstrate that in contrast to patients with RA or T1D, bone marrow central B cell selection in MS appears normal in most patients. In contrast, patients with MS suffer from a specific peripheral B cell tolerance defect that is potentially attributable to impaired Treg function and that leads to the accumulation of autoreactive B cell clones in their blood.

Authors

Tuure Kinnunen, Nicolas Chamberlain, Henner Morbach, Tineke Cantaert, Megan Lynch, Paula Preston-Hurlburt, Kevan C. Herold, David A. Hafler, Kevin C. O’Connor, Eric Meffre

×

Apolipoproteins E and AV mediate lipoprotein clearance by hepatic proteoglycans
Jon C. Gonzales, … , Erin M. Foley, Jeffrey D. Esko
Jon C. Gonzales, … , Erin M. Foley, Jeffrey D. Esko
Published May 8, 2013
Citation Information: J Clin Invest. 2013;123(6):2742-2751. https://doi.org/10.1172/JCI67398.
View: Text | PDF

Apolipoproteins E and AV mediate lipoprotein clearance by hepatic proteoglycans

  • Text
  • PDF
Abstract

The heparan sulfate proteoglycan (HSPG) syndecan-1 (SDC1) acts as a major receptor for triglyceride-rich lipoprotein (TRL) clearance in the liver. We sought to identify the relevant apolipoproteins on TRLs that mediate binding to SDC1 and determine their clinical relevance. Evidence supporting ApoE as a major determinant arose from its enrichment in TRLs from mice defective in hepatic heparan sulfate (Ndst1f/fAlbCre+ mice), decreased binding of ApoE-deficient TRLs to HSPGs on human hepatoma cells, and decreased clearance of ApoE-deficient [3H]TRLs in vivo. Evidence for a second ligand was suggested by the faster clearance of ApoE-deficient TRLs after injection into WT Ndst1f/fAlbCre– versus mutant Ndst1f/fAlbCre+ mice and elevated fasting and postprandial plasma triglycerides in compound Apoe–/–Ndst1f/fAlbCre+ mice compared with either single mutant. ApoAV emerged as a candidate based on 6-fold enrichment of ApoAV in TRLs accumulating in Ndst1f/fAlbCre+ mice, decreased binding of TRLs to proteoglycans after depletion of ApoAV or addition of anti-ApoAV mAb, and decreased heparan sulfate–dependent binding of ApoAV-deficient particles to hepatocytes. Importantly, disruption of hepatic heparan sulfate–mediated clearance increased atherosclerosis. We conclude that clearance of TRLs by hepatic HSPGs is atheroprotective and mediated by multivalent binding to ApoE and ApoAV.

Authors

Jon C. Gonzales, Philip L.S.M. Gordts, Erin M. Foley, Jeffrey D. Esko

×
Retraction
Parathyroid hormone inhibits renal phosphate transport by phosphorylation of serine 77 of sodium-hydrogen exchanger regulatory factor–1
Edward J. Weinman, … , Shirish Shenolikar, Rochelle Cunningham
Edward J. Weinman, … , Shirish Shenolikar, Rochelle Cunningham
Published June 3, 2013
Citation Information: J Clin Invest. 2013;123(6):2752-2752. https://doi.org/10.1172/JCI70657.
View: Text | PDF | Amended Article

Parathyroid hormone inhibits renal phosphate transport by phosphorylation of serine 77 of sodium-hydrogen exchanger regulatory factor–1

  • Text
  • PDF
Abstract

Authors

Edward J. Weinman, Rajat S. Biswas, Quihong Peng, Lily Shen, Christina L. Turner, Xiaofei E, Deborah Steplock, Shirish Shenolikar, Rochelle Cunningham

×
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts