Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

von Willebrand factor mutation promotes thrombocytopathy by inhibiting integrin αIIbβ3
Caterina Casari, … , Cécile V. Denis, Marijke Bryckaert
Caterina Casari, … , Cécile V. Denis, Marijke Bryckaert
Published November 25, 2013
Citation Information: J Clin Invest. 2013;123(12):5071-5081. https://doi.org/10.1172/JCI69458.
View: Text | PDF
Research Article

von Willebrand factor mutation promotes thrombocytopathy by inhibiting integrin αIIbβ3

  • Text
  • PDF
Abstract

von Willebrand disease type 2B (vWD-type 2B) is characterized by gain-of-function mutations in von Willebrand factor (vWF) that enhance its binding to the glycoprotein Ib-IX-V complex on platelets. Patients with vWD-type 2B have a bleeding tendency that is linked to loss of vWF multimers and/or thrombocytopenia. In this study, we uncovered evidence that platelet dysfunction is a third possible mechanism for bleeding tendency. We found that platelet aggregation, secretion, and spreading were diminished due to inhibition of integrin αIIbβ3 in platelets from mice expressing a vWD-type 2B–associated vWF (vWF/p.V1316M), platelets from a patient with the same mutation, and control platelets pretreated with recombinant vWF/p.V1316M. Impaired platelet function coincided with reduced thrombus growth. Further, αIIbβ3 activation and activation of the small GTPase Rap1 were impaired by vWF/p.V1316M following exposure to platelet agonists (thrombin, ADP, or convulxin). Conversely, thrombin- or ADP-induced Ca2+ store release, which is required for αIIbβ3 activation, was normal, indicating that vWF/p.V1316M acts downstream of Ca2+ release and upstream of Rap1. We found normal Syk phosphorylation and PLCγ2 activation following collagen receptor signaling, further implying that vWF/p.V1316M acts directly on or downstream of Ca2+ release. These data indicate that the vWD-type 2B mutation p.V1316M is associated with severe thrombocytopathy, which likely contributes to the bleeding tendency in vWD-type 2B.

Authors

Caterina Casari, Eliane Berrou, Marilyne Lebret, Frédéric Adam, Alexandre Kauskot, Régis Bobe, Céline Desconclois, Edith Fressinaud, Olivier D. Christophe, Peter J. Lenting, Jean-Philippe Rosa, Cécile V. Denis, Marijke Bryckaert

×

Usage data is cumulative from November 2024 through November 2025.

Usage JCI PMC
Text version 466 41
PDF 84 13
Figure 303 5
Table 37 0
Supplemental data 31 0
Citation downloads 89 0
Totals 1,010 59
Total Views 1,069
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts