Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling
Heon Yung Gee, … , Edgar A. Otto, Friedhelm Hildebrandt
Heon Yung Gee, … , Edgar A. Otto, Friedhelm Hildebrandt
Published July 8, 2013
Citation Information: J Clin Invest. 2013;123(8):3243-3253. https://doi.org/10.1172/JCI69134.
View: Text | PDF
Research Article

ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling

  • Text
  • PDF
Abstract

Nephrotic syndrome (NS) is divided into steroid-sensitive (SSNS) and -resistant (SRNS) variants. SRNS causes end-stage kidney disease, which cannot be cured. While the disease mechanisms of NS are not well understood, genetic mapping studies suggest a multitude of unknown single-gene causes. We combined homozygosity mapping with whole-exome resequencing and identified an ARHGDIA mutation that causes SRNS. We demonstrated that ARHGDIA is in a complex with RHO GTPases and is prominently expressed in podocytes of rat glomeruli. ARHGDIA mutations (R120X and G173V) from individuals with SRNS abrogated interaction with RHO GTPases and increased active GTP-bound RAC1 and CDC42, but not RHOA, indicating that RAC1 and CDC42 are more relevant to the pathogenesis of this SRNS variant than RHOA. Moreover, the mutations enhanced migration of cultured human podocytes; however, enhanced migration was reversed by treatment with RAC1 inhibitors. The nephrotic phenotype was recapitulated in arhgdia-deficient zebrafish. RAC1 inhibitors were partially effective in ameliorating arhgdia-associated defects. These findings identify a single-gene cause of NS and reveal that RHO GTPase signaling is a pathogenic mediator of SRNS.

Authors

Heon Yung Gee, Pawaree Saisawat, Shazia Ashraf, Toby W. Hurd, Virginia Vega-Warner, Humphrey Fang, Bodo B. Beck, Olivier Gribouval, Weibin Zhou, Katrina A. Diaz, Sivakumar Natarajan, Roger C. Wiggins, Svjetlana Lovric, Gil Chernin, Dominik S. Schoeb, Bugsu Ovunc, Yaacov Frishberg, Neveen A. Soliman, Hanan M. Fathy, Heike Goebel, Julia Hoefele, Lutz T. Weber, Jeffrey W. Innis, Christian Faul, Zhe Han, Joseph Washburn, Corinne Antignac, Shawn Levy, Edgar A. Otto, Friedhelm Hildebrandt

×

Full Text PDF | Download (2.46 MB)

Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts