Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Increased Fanconi C expression contributes to the emergency granulopoiesis response
Liping Hu, … , Elizabeth Hjort, Elizabeth A. Eklund
Liping Hu, … , Elizabeth Hjort, Elizabeth A. Eklund
Published August 8, 2013
Citation Information: J Clin Invest. 2013;123(9):3952-3966. https://doi.org/10.1172/JCI69032.
View: Text | PDF
Research Article Hematology

Increased Fanconi C expression contributes to the emergency granulopoiesis response

  • Text
  • PDF
Abstract

Emergency granulopoiesis is a component of the innate immune response that is induced in response to infectious or inflammatory challenge. It is characterized by the rapid expansion and differentiation of granulocyte/monocyte progenitor (GMP) populations, which is due in part to a shortened S-phase of the cell cycle. We found that IRF8 (also known as ICSBP), an interferon regulatory transcription factor that activates phagocyte effector genes during the innate immune response, activates the gene encoding Fanconi C (Fancc) in murine myeloid progenitor cells. Moreover, IRF8-induced Fancc transcription was augmented by treatment with IL-1β, an essential cytokine for emergency granulopoiesis. The Fanconi pathway participates in repair of stalled or collapsed replication forks during DNA replication, leading us to hypothesize that the Fanconi pathway contributes to genomic stability during emergency granulopoiesis. In support of this hypothesis, Fancc–/– mice developed anemia and neutropenia during repeated, failed episodes of emergency granulopoiesis. Failed emergency granulopoiesis in Fancc–/– mice was associated with excess apoptosis of HSCs and progenitor cells in the bone marrow and impaired HSC function. These studies have implications for understanding the pathogenesis of bone marrow failure in Fanconi anemia and suggest possible therapeutic approaches.

Authors

Liping Hu, Weiqi Huang, Elizabeth Hjort, Elizabeth A. Eklund

×

Figure 6

Abnormal myelopoiesis develops in Fancc–/– mice after multiple cycles of Alum injection.

Options: View larger image (or click on image) Download as PowerPoint
Abnormal myelopoiesis develops in Fancc–/– mice after multiple cycles of...
(A) Survival of Fancc–/– mice is low during multiple cycles of Alum injection. Fancc–/–, Fancc+/–, and WT mice were injected with Alum or saline every 4 weeks. The percentage of mice surviving during the treatment period was determined. All mice in the saline group survived during the treatment period. Curves for WT and Fancc–/– mice were significantly (P < 0.01) different by log-rank analysis. (B) Immature myeloid cells appear in the circulation of Fancc–/– mice after multiple Alum injections. Peripheral blood from the mice above was analyzed every 4 weeks for immature circulating myeloid cells (blasts). Statistically significant difference in myeloid blasts over time in Alum-injected mice is indicated by *P < 0.01 and with versus without Alum injection by **P < 0.01. No myeloid blasts were observed in WT or Fancc+/– mice during treatment. (C) Photomicrograph of immature myeloid cells in the circulation of Fancc–/– mice. Peripheral blood from a Fancc–/– mouse after 2 Alum injection cycles was analyzed microscopically (original magnification, ×40). Myeloid blasts are indicated by arrows, and a lymphocyte is indicated by an asterisk.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts