Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Differentiation and functional regulation of human fetal NK cells
Martin A. Ivarsson, … , Douglas F. Nixon, Jakob Michaëlsson
Martin A. Ivarsson, … , Douglas F. Nixon, Jakob Michaëlsson
Published August 15, 2013
Citation Information: J Clin Invest. 2013;123(9):3889-3901. https://doi.org/10.1172/JCI68989.
View: Text | PDF
Research Article Hematology

Differentiation and functional regulation of human fetal NK cells

  • Text
  • PDF
Abstract

The human fetal immune system is naturally exposed to maternal allogeneic cells, maternal antibodies, and pathogens. As such, it is faced with a considerable challenge with respect to the balance between immune reactivity and tolerance. Here, we show that fetal natural killer (NK) cells differentiate early in utero and are highly responsive to cytokines and antibody-mediated stimulation but respond poorly to HLA class I–negative target cells. Strikingly, expression of killer-cell immunoglobulin-like receptors (KIRs) did not educate fetal NK cells but rendered them hyporesponsive to target cells lacking HLA class I. In addition, fetal NK cells were highly susceptible to TGF-β–mediated suppression, and blocking of TGF-β signaling enhanced fetal NK cell responses to target cells. Our data demonstrate that KIR-mediated hyporesponsiveness and TGF-β–mediated suppression are major factors determining human fetal NK cell hyporesponsiveness to HLA class I–negative target cells and provide a potential mechanism for fetal-maternal tolerance in utero. Finally, our results provide a basis for understanding the role of fetal NK cells in pregnancy complications in which NK cells could be involved, for example, during in utero infections and anti-RhD–induced fetal anemia.

Authors

Martin A. Ivarsson, Liyen Loh, Nicole Marquardt, Eliisa Kekäläinen, Lena Berglin, Niklas K. Björkström, Magnus Westgren, Douglas F. Nixon, Jakob Michaëlsson

×

Figure 3

KIR expression on fetal NK cells increases with differentiation, and coexpression of several KIRs is more common on differentiated fetal lung NK cells than on adult PBNK cells.

Options: View larger image (or click on image) Download as PowerPoint
KIR expression on fetal NK cells increases with differentiation, and coe...
(A) Frequency of NK cells expressing KIR2DL1, KIR2DL3, and/or KIR3DL1 (defined by the Boolean gate “KIR2DL1+ and/or KIR2DL3+ and/or KIR3DL1+”) within each subset (liver, n = 12; lung, n = 21; full-term umbilical cord blood, n = 4; adult PBMCs, n = 26). (B) Frequency of fetal lung NK cells expressing KIR2DL1, KIR2DL3, and/or KIR3DL1, stratified over gestational weeks 15–18 (black, n = 4), 18–20 (gray, n = 8), and 20–22 (white, n = 6). (C) Frequency of NK cells coexpressing 0, 1, 2, or 3 KIRs (KIR2DL1, KIR2DL3, and/or KIR3DL1) in NKG2A+CD16–, NKG2A+CD16+, and NKG2A–CD16+ subsets of NK cells from fetal lung (black circles, n = 11) and adult PBMCs (white circles, n = 11). *P < 0.05; **P < 0.01; ***P < 0.001, 2-tailed Mann-Whitney test performed. ns, not significant. (D) Frequency of NKG2A+ NK cells in subsets with 0, 1, 2, or 3 KIR (KIR2DL1, KIR2DL3, and/or KIR3DL1) in fetal lung (n = 19), spleen (n = 9), umbilical cord blood (n = 11), and adult PBMCs (n = 25). Error bars represent SD, and bars represent mean. Horizontal bars indicate the mean percentage, and dots indicate the number of samples tested.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts