Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
NF-κB–mediated Pax7 dysregulation in the muscle microenvironment promotes cancer cachexia
Wei A. He, Emanuele Berardi, Veronica M. Cardillo, Swarnali Acharyya, Paola Aulino, Jennifer Thomas-Ahner, Jingxin Wang, Mark Bloomston, Peter Muscarella, Peter Nau, Nilay Shah, Matthew E.R. Butchbach, Katherine Ladner, Sergio Adamo, Michael A. Rudnicki, Charles Keller, Dario Coletti, Federica Montanaro, Denis C. Guttridge
Wei A. He, Emanuele Berardi, Veronica M. Cardillo, Swarnali Acharyya, Paola Aulino, Jennifer Thomas-Ahner, Jingxin Wang, Mark Bloomston, Peter Muscarella, Peter Nau, Nilay Shah, Matthew E.R. Butchbach, Katherine Ladner, Sergio Adamo, Michael A. Rudnicki, Charles Keller, Dario Coletti, Federica Montanaro, Denis C. Guttridge
View: Text | PDF
Research Article Oncology

NF-κB–mediated Pax7 dysregulation in the muscle microenvironment promotes cancer cachexia

  • Text
  • PDF
Abstract

Cachexia is a debilitating condition characterized by extreme skeletal muscle wasting that contributes significantly to morbidity and mortality. Efforts to elucidate the underlying mechanisms of muscle loss have predominantly focused on events intrinsic to the myofiber. In contrast, less regard has been given to potential contributory factors outside the fiber within the muscle microenvironment. In tumor-bearing mice and patients with pancreatic cancer, we found that cachexia was associated with a type of muscle damage resulting in activation of both satellite and nonsatellite muscle progenitor cells. These muscle progenitors committed to a myogenic program, but were inhibited from completing differentiation by an event linked with persistent expression of the self-renewing factor Pax7. Overexpression of Pax7 was sufficient to induce atrophy in normal muscle, while under tumor conditions, the reduction of Pax7 or exogenous addition of its downstream target, MyoD, reversed wasting by restoring cell differentiation and fusion with injured fibers. Furthermore, Pax7 was induced by serum factors from cachectic mice and patients, in an NF-κB–dependent manner, both in vitro and in vivo. Together, these results suggest that Pax7 responds to NF-κB by impairing the regenerative capacity of myogenic cells in the muscle microenvironment to drive muscle wasting in cancer.

Authors

Wei A. He, Emanuele Berardi, Veronica M. Cardillo, Swarnali Acharyya, Paola Aulino, Jennifer Thomas-Ahner, Jingxin Wang, Mark Bloomston, Peter Muscarella, Peter Nau, Nilay Shah, Matthew E.R. Butchbach, Katherine Ladner, Sergio Adamo, Michael A. Rudnicki, Charles Keller, Dario Coletti, Federica Montanaro, Denis C. Guttridge

×

Figure 4

Muscle regeneration is compromised in cancer cachexia.

Options: View larger image (or click on image) Download as PowerPoint
Muscle regeneration is compromised in cancer cachexia.
(A and B) 6-week-...
(A and B) 6-week-old mdx mice were injected with C-26 tumors or saline. (A) After 2 weeks, GAST were analyzed by H&E or immunostained with e-MyHC and collagen IV (Col IV). (B) Quantitation of centrally located nuclei (CLN) and e-MyHC+ fibers. (C) TA from control and C-26 mice were injured by freezing and analyzed after 8 days by H&E. (D) TA were injured, and mice were subsequently injected with BrdU. TA was immunostained with BrdU and α-laminin. (E) Athymic nude control and C-26 mice were subjected to TA injury and transplanted with muscle mononuclear cells from desmin-nLacZ transgenic mice. 1 week after injury, TA was stained for LacZ. Arrows denote desmin+ nuclei within myofibers. Inset shows interstitial LacZ+ cells (enlarged ×5). (F–H) TA from control (n = 5) and C-26 (n = 7) mice were injured and transplanted with FACS-sorted Tomato+ cells. (F) After transplantation, muscle sections were immunostained for α-laminin and DAPI (blue). Tomato+ myofiber number (G) and size (H) were also quantified. (I and J) As in F, except that the donor population was sorted for CD34+Sca1+ cells from nontumor GFP reporter mice. (I) Immunostaining of GFP, α-laminin, and DAPI (blue). (J) GFP+ myofibers. (K and L) C-26 mice and surgically tumor-resected C-26 mice (TR) were injected with BrdU (n = 5 per group). (K) Sections were stained for BrdU, α-laminin, and DAPI (blue). (L) Sublaminar BrdU+ nuclei from tumor-resected animals. Scale bars: 25 μm (A, H&E); 100 μm (A, immunostaining); 20 μm (C; E; F; I; and K); 10 μm (D). **P < 0.01, ***P < 0.001.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts