Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Anti-EGFL7 antibodies enhance stress-induced endothelial cell death and anti-VEGF efficacy
Leisa Johnson, … , Weilan Ye, Priti S. Hegde
Leisa Johnson, … , Weilan Ye, Priti S. Hegde
Published August 15, 2013
Citation Information: J Clin Invest. 2013;123(9):3997-4009. https://doi.org/10.1172/JCI67892.
View: Text | PDF
Research Article Oncology

Anti-EGFL7 antibodies enhance stress-induced endothelial cell death and anti-VEGF efficacy

  • Text
  • PDF
Abstract

Many oncology drugs are administered at their maximally tolerated dose without the knowledge of their optimal efficacious dose range. In this study, we describe a multifaceted approach that integrated preclinical and clinical data to identify the optimal dose for an antiangiogenesis agent, anti-EGFL7. EGFL7 is an extracellular matrix–associated protein expressed in activated endothelium. Recombinant EGFL7 protein supported EC adhesion and protected ECs from stress-induced apoptosis. Anti-EGFL7 antibodies inhibited both of these key processes and augmented anti-VEGF–mediated vascular damage in various murine tumor models. In a genetically engineered mouse model of advanced non–small cell lung cancer, we found that anti-EGFL7 enhanced both the progression-free and overall survival benefits derived from anti-VEGF therapy in a dose-dependent manner. In addition, we identified a circulating progenitor cell type that was regulated by EGFL7 and evaluated the response of these cells to anti-EGFL7 treatment in both tumor-bearing mice and cancer patients from a phase I clinical trial. Importantly, these preclinical efficacy and clinical biomarker results enabled rational selection of the anti-EGFL7 dose currently being tested in phase II clinical trials.

Authors

Leisa Johnson, Mahrukh Huseni, Tanya Smyczek, Anthony Lima, Stacey Yeung, Jason H. Cheng, Rafael Molina, David Kan, Ann De Mazière, Judith Klumperman, Ian Kasman, Yin Zhang, Mark S. Dennis, Jeffrey Eastham-Anderson, Adrian M. Jubb, Olivia Hwang, Rupal Desai, Maike Schmidt, Michelle A. Nannini, Kai H. Barck, Richard A.D. Carano, William F. Forrest, Qinghua Song, Daniel S. Chen, Louie Naumovski, Mallika Singh, Weilan Ye, Priti S. Hegde

×

Full Text PDF | Download (1.80 MB)

Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts