Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Retinal angiogenesis suppression through small molecule activation of p53
Sai H. Chavala, … , Thomas C. Lee, Jayakrishna Ambati
Sai H. Chavala, … , Thomas C. Lee, Jayakrishna Ambati
Published September 9, 2013
Citation Information: J Clin Invest. 2013;123(10):4170-4181. https://doi.org/10.1172/JCI67315.
View: Text | PDF
Research Article Vascular biology

Retinal angiogenesis suppression through small molecule activation of p53

  • Text
  • PDF
Abstract

Neovascular age-related macular degeneration is a leading cause of irreversible vision loss in the Western world. Cytokine-targeted therapies (such as anti-vascular endothelial growth factor) are effective in treating pathologic ocular angiogenesis, but have not led to a durable effect and often require indefinite treatment. Here, we show that Nutlin-3, a small molecule antagonist of the E3 ubiquitin protein ligase MDM2, inhibited angiogenesis in several model systems. We found that a functional p53 pathway was essential for Nutlin-3–mediated retinal antiangiogenesis and disruption of the p53 transcriptional network abolished the antiangiogenic activity of Nutlin-3. Nutlin-3 did not inhibit established, mature blood vessels in the adult mouse retina, suggesting that only proliferating retinal vessels are sensitive to Nutlin-3. Furthermore, Nutlin-3 inhibited angiogenesis in nonretinal models such as the hind limb ischemia model. Our work demonstrates that Nutlin-3 functions through an antiproliferative pathway with conceivable advantages over existing cytokine-targeted antiangiogenesis therapies.

Authors

Sai H. Chavala, Younghee Kim, Laura Tudisco, Valeria Cicatiello, Till Milde, Nagaraj Kerur, Nidia Claros, Susan Yanni, Victor H. Guaiquil, William W. Hauswirth, John S. Penn, Shahin Rafii, Sandro De Falco, Thomas C. Lee, Jayakrishna Ambati

×

Figure 3

Nutlin-3 induces p53 expression and a downstream target in HUVECs and HUVSMCs.

Options: View larger image (or click on image) Download as PowerPoint
Nutlin-3 induces p53 expression and a downstream target in HUVECs and HU...
(A) HUVECs were seeded on plastic-bottom culture dishes precoated with gelatin and treated with either 5 μM of Nutlin-3A, 5 μM of Nutlin-3B, or vehicle after 8 hours. Images were taken with an epifluorescent microscope and are representative of p53 expression (middle column) in the nucleus (left column) of HUVECs. Original magnification, ×400. (B) Western blot analysis for p53 and p21 was performed on lysates obtained from HUVECs treated with Nutlin-3A, Nutlin-3B, or vehicle in various concentrations for 8 hours. (C) Representative magnified confocal images are shown of HUVSMCs treated with either 7.5 μM of Nutlin-3A or vehicle after 8 hours. Original magnification, ×200. Nuclear p53 expression is shown in red and TO-PRO-3, a nuclear stain, in blue. (D) Western blot analysis for p53 and p21 was performed on lysates obtained from HUVSMCs treated with Nutlin-3A or vehicle.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts