Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Mycolactone activation of Wiskott-Aldrich syndrome proteins underpins Buruli ulcer formation
Laure Guenin-Macé, … , Marie-France Carlier, Caroline Demangel
Laure Guenin-Macé, … , Marie-France Carlier, Caroline Demangel
Published March 15, 2013
Citation Information: J Clin Invest. 2013;123(4):1501-1512. https://doi.org/10.1172/JCI66576.
View: Text | PDF
Research Article Infectious disease

Mycolactone activation of Wiskott-Aldrich syndrome proteins underpins Buruli ulcer formation

  • Text
  • PDF
Abstract

Mycolactone is a diffusible lipid secreted by the human pathogen Mycobacterium ulcerans, which induces the formation of open skin lesions referred to as Buruli ulcers. Here, we show that mycolactone operates by hijacking the Wiskott-Aldrich syndrome protein (WASP) family of actin-nucleating factors. By disrupting WASP autoinhibition, mycolactone leads to uncontrolled activation of ARP2/3-mediated assembly of actin in the cytoplasm. In epithelial cells, mycolactone-induced stimulation of ARP2/3 concentrated in the perinuclear region, resulting in defective cell adhesion and directional migration. In vivo injection of mycolactone into mouse ears consistently altered the junctional organization and stratification of keratinocytes, leading to epidermal thinning, followed by rupture. This degradation process was efficiently suppressed by coadministration of the N-WASP inhibitor wiskostatin. These results elucidate the molecular basis of mycolactone activity and provide a mechanism for Buruli ulcer pathogenesis. Our findings should allow for the rationale design of competitive inhibitors of mycolactone binding to N-WASP, with anti–Buruli ulcer therapeutic potential.

Authors

Laure Guenin-Macé, Romain Veyron-Churlet, Maria-Isabel Thoulouze, Guillaume Romet-Lemonne, Hui Hong, Peter F. Leadlay, Anne Danckaert, Marie-Thérèse Ruf, Serge Mostowy, Chiara Zurzolo, Philippe Bousso, Fabrice Chrétien, Marie-France Carlier, Caroline Demangel

×

Figure 3

Mycolactone activates cellular WASPs.

Options: View larger image (or click on image) Download as PowerPoint
Mycolactone activates cellular WASPs.
(A) Streptavidin-latex beads were ...
(A) Streptavidin-latex beads were coated with biotinylated mycolactone or solvent control, then incubated with N-WASP and placed in Jurkat T cell extracts supplemented with ATP, MgCl2, and Alexa Fluor 488–labeled actin monomers for 2 hours. Representative beads are shown in phase-contrast and fluorescence. Mean fluorescence signal of more than 30 beads from 3 independent experiments are compared. ****P < 0.0001, unpaired 2-tailed t test, Welch corrected. (B) Jurkat cells were treated with a mycolactone fluorescent derivative (bodipy-Myco) for 1 hour, then processed for immunofluorescence with antibody binding the open form of WASP (active-WASP) and antibody recognizing p34-ARP2/3. Each image corresponds to a single confocal plane. 8 of 11 randomly picked cells had a Pearson coefficient greater than 0.5 (calculated on a z stack), indicative of Bodipy-mycolactone and active WASP colocalization. (C) Differential ARP2/3 complex recruitment in HeLa cells treated with vehicle (control), 20 nM mycolactone for 4 hours, or mycolactone plus 1 μM wiskostatin (Wisko). Representative immunofluorescence images and integrated p34-ARP2/3 intensities (n > 50) in the perinuclear region (see Methods) are shown. Perinuclear enrichment was calculated as mean ± SEM intensity and presented relative to control. *P < 0.05, ANOVA with Dunn post-test. (D) Western blot analysis of N-WASP, p34-ARP2/3, and actin expression in HeLa cells exposed to 20 nM mycolactone for 6 or 16 hours, compared with vehicle-treated control cells and untreated cells (Unt). GAPDH served as an internal control. Scale bars: 5 μm (A and B); 25 μm (C).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts