Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Therapeutic antagonists of microRNAs deplete leukemia-initiating cell activity
Chinavenmeni S. Velu, … , Brian Gebelein, H. Leighton Grimes
Chinavenmeni S. Velu, … , Brian Gebelein, H. Leighton Grimes
Published December 16, 2013
Citation Information: J Clin Invest. 2014;124(1):222-236. https://doi.org/10.1172/JCI66005.
View: Text | PDF
Research Article Oncology

Therapeutic antagonists of microRNAs deplete leukemia-initiating cell activity

  • Text
  • PDF
Abstract

Acute myelogenous leukemia (AML) subtypes that result from oncogenic activation of homeobox (HOX) transcription factors are associated with poor prognosis. The HOXA9 transcription activator and growth factor independent 1 (GFI1) transcriptional repressor compete for occupancy at DNA-binding sites for the regulation of common target genes. We exploited this HOXA9 versus GFI1 antagonism to identify the genes encoding microRNA-21 and microRNA-196b as transcriptional targets of HOX-based leukemia oncoproteins. Therapeutic inhibition of microRNA-21 and microRNA-196b inhibited in vitro leukemic colony forming activity and depleted in vivo leukemia-initiating cell activity of HOX-based leukemias, which led to leukemia-free survival in a murine AML model and delayed disease onset in xenograft models. These data establish microRNA as functional effectors of endogenous HOXA9 and HOX-based leukemia oncoproteins, provide a concise in vivo platform to test RNA therapeutics, and suggest therapeutic value for microRNA antagonists in AML.

Authors

Chinavenmeni S. Velu, Aditya Chaubey, James D. Phelan, Shane R. Horman, Mark Wunderlich, Monica L. Guzman, Anil G. Jegga, Nancy J. Zeleznik-Le, Jianjun Chen, James C. Mulloy, Jose A. Cancelas, Craig T. Jordan, Bruce J. Aronow, Guido Marcucci, Balkrishen Bhat, Brian Gebelein, H. Leighton Grimes

×

Figure 5

In vivo platform to test RNA therapeutic treatment for MLL-AF9–initiated leukemia.

Options: View larger image (or click on image) Download as PowerPoint
In vivo platform to test RNA therapeutic treatment for MLL-AF9–initiated...
(A) Scheme of experimental strategy showing transplant with LIC-enriched AML cells, treatment groups (n = 4 recipient mice per group), and flow analysis. (B) Kaplan-Meier survival curve of partially conditioned C57BL/6 mice (CD45.2+) transplanted with 10,000 c-Kit+CD45.1+ CD45.2+ MLL-AF9 leukemic splenocytes (n = 4 mice per group). Four days later, 6-week osmotic pumps containing A21+A196b or CA21+CA196b (shaded area denotes time of pump activity) were implanted in the mice, and mice were followed for survival. Insets show flow plots of MLL-AF9 c-Kit+CD45.1+CD45.2+ cells in mice at the indicated time points. (C) TaqMan analysis quantifies the steady state level of mature miR-21 and miR-196b in the peripheral white blood cells of WT mice 10 days after implantation of pumps with the indicated antagomirs. (D and F) MOE is effective in vitro, but ineffective in vivo, at antagonizing microRNA in the MLL-AF9 mouse model of AML. (D) Enumeration of CFU replating after control or MOE (21+196b) treatment of MLL-AF9–transformed cells. (n = 3, mean ± SD). (E) Repeat of transplant as in part B using 10,000 c-Kit+CD45.1+CD45.2+ MLL-AF9 leukemic splenocytes but with MOE (n = 3 mice per group). (F) TaqMan analysis quantifies the steady state levels of mature miR-21 and miR-196b in the peripheral white blood cells of WT mice 10 days after implantation of pumps with the indicated MOE. Note that the MOE lack a cholesterol moiety. ***P < 0.001.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts