Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Therapeutic antagonists of microRNAs deplete leukemia-initiating cell activity
Chinavenmeni S. Velu, … , Brian Gebelein, H. Leighton Grimes
Chinavenmeni S. Velu, … , Brian Gebelein, H. Leighton Grimes
Published December 16, 2013
Citation Information: J Clin Invest. 2014;124(1):222-236. https://doi.org/10.1172/JCI66005.
View: Text | PDF
Research Article Oncology

Therapeutic antagonists of microRNAs deplete leukemia-initiating cell activity

  • Text
  • PDF
Abstract

Acute myelogenous leukemia (AML) subtypes that result from oncogenic activation of homeobox (HOX) transcription factors are associated with poor prognosis. The HOXA9 transcription activator and growth factor independent 1 (GFI1) transcriptional repressor compete for occupancy at DNA-binding sites for the regulation of common target genes. We exploited this HOXA9 versus GFI1 antagonism to identify the genes encoding microRNA-21 and microRNA-196b as transcriptional targets of HOX-based leukemia oncoproteins. Therapeutic inhibition of microRNA-21 and microRNA-196b inhibited in vitro leukemic colony forming activity and depleted in vivo leukemia-initiating cell activity of HOX-based leukemias, which led to leukemia-free survival in a murine AML model and delayed disease onset in xenograft models. These data establish microRNA as functional effectors of endogenous HOXA9 and HOX-based leukemia oncoproteins, provide a concise in vivo platform to test RNA therapeutics, and suggest therapeutic value for microRNA antagonists in AML.

Authors

Chinavenmeni S. Velu, Aditya Chaubey, James D. Phelan, Shane R. Horman, Mark Wunderlich, Monica L. Guzman, Anil G. Jegga, Nancy J. Zeleznik-Le, Jianjun Chen, James C. Mulloy, Jose A. Cancelas, Craig T. Jordan, Bruce J. Aronow, Guido Marcucci, Balkrishen Bhat, Brian Gebelein, H. Leighton Grimes

×

Figure 2

Expression of miR-21 and miR-196b is regulated by endogenous and oncogenic levels of HOXA9.

Options: View larger image (or click on image) Download as PowerPoint
Expression of miR-21 and miR-196b is regulated by endogenous and oncogen...
(A) TaqMan analysis of the steady state level of mature miR-21, miR-196b, miR-155 (positive HOXA9 target gene control), and miR-224 (negative control) expression in Lin– BM cells with limiting alleles of Gfi1 and HoxA9 (n = 3). (B) Expression profiling of HOXA9, GFI1, MIR196B, and MIR21 in 7 de novo t(11q; 23) and 5 t(8; 21) AML samples. Expression data were mean centered (relative value scale shown in the bottom right). (C and D) TaqMan analysis of miR-21 (C) and miR-196b (D) expression in Lin– BM cells transduced with a retroviral vector encoding the indicated oncoprotein or empty vector (EV) (n = 3). *P < 0.05; **P < 0.01; ***P < 0.001.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts