Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
HGF-MET signals via the MLL-ETS2 complex in hepatocellular carcinoma
Shugaku Takeda, … , Emily H. Cheng, James J. Hsieh
Shugaku Takeda, … , Emily H. Cheng, James J. Hsieh
Published June 24, 2013
Citation Information: J Clin Invest. 2013;123(7):3154-3165. https://doi.org/10.1172/JCI65566.
View: Text | PDF
Research Article

HGF-MET signals via the MLL-ETS2 complex in hepatocellular carcinoma

  • Text
  • PDF
Abstract

HGF signals through its cognate receptor, MET, to orchestrate diverse biological processes, including cell proliferation, cell fate specification, organogenesis, and epithelial-mesenchymal transition. Mixed-lineage leukemia (MLL), an epigenetic regulator, plays critical roles in cell fate, stem cell, and cell cycle decisions. Here, we describe a role for MLL in the HGF-MET signaling pathway. We found a shared phenotype among Mll–/–, Hgf–/–, and Met–/– mice with common cranial nerve XII (CNXII) outgrowth and myoblast migration defects. Phenotypic analysis demonstrated that MLL was required for HGF-induced invasion and metastatic growth of hepatocellular carcinoma cell lines. HGF-MET signaling resulted in the accumulation of ETS2, which interacted with MLL to transactivate MMP1 and MMP3. ChIP assays demonstrated that activation of the HGF-MET pathway resulted in increased occupancy of the MLL-ETS2 complex on MMP1 and MMP3 promoters, where MLL trimethylated histone H3 lysine 4 (H3K4), activating transcription. Our results present an epigenetic link between MLL and the HGF-MET signaling pathway, which may suggest new strategies for therapeutic intervention.

Authors

Shugaku Takeda, Han Liu, Satoru Sasagawa, Yiyu Dong, Paul A. Trainor, Emily H. Cheng, James J. Hsieh

×

Full Text PDF | Download (3.22 MB)

Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts