Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Hypoxia-inducible factor regulates hepcidin via erythropoietin-induced erythropoiesis
Qingdu Liu, … , Knut Niss, Volker H. Haase
Qingdu Liu, … , Knut Niss, Volker H. Haase
Published November 1, 2012
Citation Information: J Clin Invest. 2012;122(12):4635-4644. https://doi.org/10.1172/JCI63924.
View: Text | PDF
Research Article Hematology

Hypoxia-inducible factor regulates hepcidin via erythropoietin-induced erythropoiesis

  • Text
  • PDF
Abstract

Iron demand in bone marrow increases when erythropoiesis is stimulated by hypoxia via increased erythropoietin (EPO) synthesis in kidney and liver. Hepcidin, a small polypeptide produced by hepatocytes, plays a central role in regulating iron uptake by promoting internalization and degradation of ferroportin, the only known cellular iron exporter. Hypoxia suppresses hepcidin, thereby enhancing intestinal iron uptake and release from internal stores. While HIF, a central mediator of cellular adaptation to hypoxia, directly regulates renal and hepatic EPO synthesis under hypoxia, the molecular basis of hypoxia/HIF-mediated hepcidin suppression in the liver remains unclear. Here, we used a genetic approach to disengage HIF activation from EPO synthesis and found that HIF-mediated suppression of the hepcidin gene (Hamp1) required EPO induction. EPO induction was associated with increased erythropoietic activity and elevated serum levels of growth differentiation factor 15. When erythropoiesis was inhibited pharmacologically, Hamp1 was no longer suppressed despite profound elevations in serum EPO, indicating that EPO by itself is not directly involved in Hamp1 regulation. Taken together, we provide in vivo evidence that Hamp1 suppression by the HIF pathway occurs indirectly through stimulation of EPO-induced erythropoiesis.

Authors

Qingdu Liu, Olena Davidoff, Knut Niss, Volker H. Haase

×

Figure 1

Inactivation of Vhl suppresses Hamp1.

Options: View larger image (or click on image) Download as PowerPoint
Inactivation of Vhl suppresses Hamp1.
 
(A) Shown are results from real-...
(A) Shown are results from real-time PCR analysis of Vhl and Vegf mRNA levels in Vhl–/– livers (n = 3) and Epo mRNA levels in Vhl–/– kidneys and livers (n = 3); analysis was performed on day 8 after the first tamoxifen injection. Relative mRNA expression levels were normalized to 18S ribosomal RNA. (B) Global inactivation of Vhl induces erythropoiesis. Shown are individual Hct values (n = 14 and 13, respectively), reticulocyte counts (%) (n = 6 each), and serum Epo concentrations (sEpo) (n = 3 each) from control and mutant mice and a representative picture of a control and a Vhl–/– spleen. Lower right panel shows a representative FACS plot of CD71/Ter119 double-stained BM and spleen cells from an individual control mouse and Vhl mutant. Percentages of CD71hi/Ter119hi-positive cells (right upper quadrant) are indicated. (C) Shown are relative expression levels of Hamp1 mRNA in control and Vhl–/– livers (n = 5 and 3, respectively) and serum iron (n = 3 each) and liver iron concentrations (n = 7 and 4, respectively). H-ferritin protein levels in control and Vhl–/– livers were determined by immunoblot in 3 mice, β-actin served as loading control. Asterisks indicate a statistically significant difference when comparisons were made to the control group: *P < 0.05; **P< 0.01; ***P< 0.001. Shown are arithmetic mean values ± SEM. Co, Cre-negative littermate control; retic, reticulocytes.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts